Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Circulation ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660790

ABSTRACT

Tricuspid valve disease is an often underrecognized clinical problem that is associated with significant morbidity and mortality. Unfortunately, patients will often present late in their disease course with severe right-sided heart failure, pulmonary hypertension, and life-limiting symptoms that have few durable treatment options. Traditionally, the only treatment for tricuspid valve disease has been medical therapy or surgery; however, there have been increasing interest and success with the use of transcatheter tricuspid valve therapies over the past several years to treat patients with previously limited therapeutic options. The tricuspid valve is complex anatomically, lying adjacent to important anatomic structures such as the right coronary artery and the atrioventricular node, and is the passageway for permanent pacemaker leads into the right ventricle. In addition, the mechanism of tricuspid pathology varies widely between patients, which can be due to primary, secondary, or a combination of causes, meaning that it is not possible for 1 type of device to be suitable for treatment of all cases of tricuspid valve disease. To best visualize the pathology, several modalities of advanced cardiac imaging are often required, including transthoracic echocardiography, transesophageal echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging, to best visualize the pathology. This detailed imaging provides important information for choosing the ideal transcatheter treatment options for patients with tricuspid valve disease, taking into account the need for the lifetime management of the patient. This review highlights the important background, anatomic considerations, therapeutic options, and future directions with regard to treatment of tricuspid valve disease.

2.
Circ Res ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639096

ABSTRACT

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in nearly 19 000 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity (SYNTAX/Duke scores). The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM, in cultured human vascular SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced-stage, symptomatic atherosclerosis.

3.
Cardiovasc Res ; 120(3): 223-236, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38385523

ABSTRACT

Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.


Subject(s)
Cardiovascular System , Endothelial Cells , Humans , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Signal Transduction , Cell Differentiation
4.
JACC Cardiovasc Imaging ; 17(4): 411-424, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38300202

ABSTRACT

BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.


Subject(s)
Cardiomyopathies , Myocarditis , Sarcoidosis , Humans , Fluorodeoxyglucose F18 , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/therapy , Cardiomyopathies/complications , Contrast Media , Radiopharmaceuticals , Predictive Value of Tests , Gadolinium , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Myocarditis/complications , Magnetic Resonance Spectroscopy , Sarcoidosis/diagnostic imaging , Sarcoidosis/therapy , Sarcoidosis/complications
6.
Ann Am Thorac Soc ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358332

ABSTRACT

RATIONALE: Randomized controlled trials of continuous positive airway pressure (CPAP) therapy for cardiovascular disease (CVD) prevention among patients with obstructive sleep apnea (OSA) have been largely neutral. However, given OSA is a heterogeneous disease, there may be unidentified subgroups demonstrating differential treatment effects. OBJECTIVES: Apply a novel data-drive approach to identify non-sleepy OSA subgroups with heterogeneous effects of CPAP on CVD outcomes within the ISAACC study. METHODS: Participants were randomly partitioned into two datasets. One for training (70%) our machine learning model and a second (30%) for validation of significant findings. Model-based recursive partitioning was applied to identify subgroups with heterogeneous treatment effects. Survival analysis was conducted to compare treatment (CPAP versus usual care [UC]) outcomes within subgroups. RESULTS: A total of 1,224 non-sleepy OSA participants were included. Of fifty-five features entered into our model only two appeared in the final model (i.e., average OSA event duration and hypercholesterolemia). Among participants at or below the model-derived average event duration threshold (19.5 seconds), CPAP was protective for a composite of CVD events (training Hazard Ratio [HR] 0.46, p=0.002). For those with longer event duration (>19.5 seconds), an additional split occurred by hypercholesterolemia status. Among participants with longer event duration and hypercholesterolemia, CPAP resulted in more CVD events compared to UC (training HR 2.24, p=0.011). The point estimate for this harmful signal was also replicated in the testing dataset (HR 1.83, p=0.118). CONCLUSIONS: We discovered subgroups of non-sleepy OSA participants within the ISAACC study with heterogeneous effects of CPAP. Among the training dataset, those with longer OSA event duration and hypercholesterolemia had nearly 2.5-times more CVD events with CPAP compared to UC, while those with shorter OSA event duration had roughly half the rate of CVD events if randomized to CPAP.

7.
Cell Genom ; 4(1): 100465, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38190101

ABSTRACT

Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.


Subject(s)
Coronary Vessels , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease/genetics , Gene Expression Regulation , Quantitative Trait Loci/genetics
8.
JAMA Cardiol ; 9(3): 254-261, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38265806

ABSTRACT

Importance: Spontaneous coronary artery dissection (SCAD) is a poorly understood cause of acute coronary syndrome that predominantly affects women. Evidence to date suggests a complex genetic architecture, while a family history is reported for a minority of cases. Objective: To determine the contribution of rare and common genetic variants to SCAD risk in familial cases, the latter via the comparison of a polygenic risk score (PRS) with those with sporadic SCAD and healthy controls. Design, Setting, and Participants: This genetic association study analyzed families with SCAD, individuals with sporadic SCAD, and healthy controls. Genotyping was undertaken for all participants. Participants were recruited between 2017 and 2021. A PRS for SCAD was calculated for all participants. The presence of rare variants in genes associated with connective tissue disorders (CTD) was also assessed. Individuals with SCAD were recruited via social media or from a single medical center. A previously published control database of older healthy individuals was used. Data were analyzed from January 2022 to October 2023. Exposures: PRS for SCAD comprised of 7 single-nucleotide variants. Main Outcomes and Measures: Disease status (familial SCAD, sporadic SCAD, or healthy control) associated with PRS. Results: A total of 13 families with SCAD (27 affected and 12 unaffected individuals), 173 individuals with sporadic SCAD, and 1127 healthy controls were included. A total of 188 individuals with SCAD (94.0%) were female, including 25 of 27 with familial SCAD and 163 of 173 with sporadic SCAD; of 12 unaffected individuals from families with SCAD, 6 (50%) were female; and of 1127 healthy controls, 672 (59.6%) were female. Compared with healthy controls, the odds of being an affected family member or having sporadic SCAD was significantly associated with a SCAD PRS (where the odds ratio [OR] represents an increase in odds per 1-SD increase in PRS) (affected family member: OR, 2.14; 95% CI, 1.78-2.50; adjusted P = 1.96 × 10-4; sporadic SCAD: OR, 1.63; 95% CI, 1.37-1.89; adjusted P = 5.69 × 10-4). This association was not seen for unaffected family members (OR, 1.03; 95% CI, 0.46-1.61; adjusted P = .91) compared with controls. Further, those with familial SCAD were overrepresented in the top quintile of the control PRS distribution (OR, 3.70; 95% CI, 2.93-4.47; adjusted P = .001); those with sporadic SCAD showed a similar pattern (OR, 2.51; 95% CI, 1.98-3.04; adjusted P = .001). Affected individuals within a family did not share any rare deleterious variants in CTD-associated genes. Conclusions and Relevance: Extreme aggregation of common genetic risk appears to play a significant role in familial clustering of SCAD as well as in sporadic case predisposition, although further study is required.


Subject(s)
Coronary Vessel Anomalies , Coronary Vessels , Vascular Diseases , Vascular Diseases/congenital , Humans , Female , Male , Vascular Diseases/genetics , Risk Factors , Genotype , Genetic Risk Score
9.
Trends Biotechnol ; 42(3): 369-381, 2024 03.
Article in English | MEDLINE | ID: mdl-37852854

ABSTRACT

The performance of synthetic biomaterial vascular grafts for the bypass of stenotic and dysfunctional blood vessels remains an intractable challenge in small-diameter applications. The functionalization of biomaterials with extracellular matrix (ECM) molecules is a promising approach because these molecules can regulate multiple biological processes in vascular tissues. In this review, we critically examine emerging approaches to ECM-containing vascular graft biomaterials and explore opportunities for future research and development toward clinical use.


Subject(s)
Biocompatible Materials , Biomimetics , Blood Vessel Prosthesis , Extracellular Matrix , Tissue Engineering
10.
Nat Rev Neurol ; 19(12): 737-753, 2023 12.
Article in English | MEDLINE | ID: mdl-37957261

ABSTRACT

As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Humans , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Dementia, Vascular/diagnosis , Dementia, Vascular/genetics , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Biomarkers/metabolism
11.
Cell Rep ; 42(11): 113380, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37950869

ABSTRACT

Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Genome-Wide Association Study , Atherosclerosis/genetics , Coronary Artery Disease/genetics , Myocytes, Smooth Muscle , Calcium-Binding Proteins/genetics
12.
Cell Rep ; 42(11): 113371, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37938972

ABSTRACT

Senescent cells are a major contributor to age-dependent cardiovascular tissue dysfunction, but knowledge of their in vivo cell markers and tissue context is lacking. To reveal tissue-relevant senescence biology, we integrate the transcriptomes of 10 experimental senescence cell models with a 224 multi-tissue gene co-expression network based on RNA-seq data of seven tissues biopsies from ∼600 coronary artery disease (CAD) patients. We identify 56 senescence-associated modules, many enriched in CAD GWAS genes and correlated with cardiometabolic traits-which supports universality of senescence gene programs across tissues and in CAD. Cross-tissue network analyses reveal 86 candidate senescence-associated secretory phenotype (SASP) factors, including COL6A3. Experimental knockdown of COL6A3 induces transcriptional changes that overlap the majority of the experimental senescence models, with cell-cycle arrest linked to modulation of DREAM complex-targeted genes. We provide a transcriptomic resource for cellular senescence and identify candidate biomarkers, SASP factors, and potential drivers of senescence in human tissues.


Subject(s)
Cellular Senescence , Transcriptome , Humans , Transcriptome/genetics , Cellular Senescence/genetics , Phenotype , Biomarkers , Collagen , Collagen Type VI/genetics
13.
Nat Genet ; 55(10): 1651-1664, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37770635

ABSTRACT

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Atherosclerosis/genetics , Black People/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Risk Factors , European People/genetics
14.
J Am Coll Cardiol ; 82(13): 1343-1359, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37730292

ABSTRACT

Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Myocardial Infarction , Humans , Coronary Artery Disease/epidemiology , Critical Pathways , Heart Disease Risk Factors
15.
medRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546840

ABSTRACT

Background: Leukocyte progenitors derived from clonal hematopoiesis of undetermined potential (CHIP) are associated with increased cardiovascular events. However, the prevalence and functional relevance of CHIP in coronary artery disease (CAD) are unclear, and cells affected by CHIP have not been detected in human atherosclerotic plaques. Methods: CHIP mutations in blood and tissues were identified by targeted deep-DNA-sequencing (DNAseq: coverage >3,000) and whole-genome-sequencing (WGS: coverage >35). CHIP-mutated leukocytes were visualized in human atherosclerotic plaques by mutaFISH™. Functional relevance of CHIP mutations was studied by RNAseq. Results: DNAseq of whole blood from 540 deceased CAD patients of the Munich cardIovaScular StudIes biObaNk (MISSION) identified 253 (46.9%) CHIP mutation carriers (mean age 78.3 years). DNAseq on myocardium, atherosclerotic coronary and carotid arteries detected identical CHIP mutations in 18 out of 25 mutation carriers in tissue DNA. MutaFISH™ visualized individual macrophages carrying DNMT3A CHIP mutations in human atherosclerotic plaques. Studying monocyte-derived macrophages from Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET; n=941) by WGS revealed CHIP mutations in 14.2% (mean age 67.1 years). RNAseq of these macrophages revealed that expression patterns in CHIP mutation carriers differed substantially from those of non-carriers. Moreover, patterns were different depending on the underlying mutations, e.g. those carrying TET2 mutations predominantly displayed upregulated inflammatory signaling whereas ASXL1 mutations showed stronger effects on metabolic pathways. Conclusions: Deep-DNA-sequencing reveals a high prevalence of CHIP mutations in whole blood of CAD patients. CHIP-affected leukocytes invade plaques in human coronary arteries. RNAseq data obtained from macrophages of CHIP-affected patients suggest that pro-atherosclerotic signaling differs depending on the underlying mutations. Further studies are necessary to understand whether specific pathways affected by CHIP mutations may be targeted for personalized treatment.

16.
FASEB J ; 37(7): e23029, 2023 07.
Article in English | MEDLINE | ID: mdl-37310585

ABSTRACT

The increasing incidence of cardiovascular disease (CVD) has led to a significant ongoing need to address this surgically through coronary artery bypass grafting (CABG) and percutaneous coronary interventions (PCI). From this, there continues to be a substantial burden of mortality and morbidity due to complications arising from endothelial damage, resulting in restenosis. Whilst mast cells (MC) have been shown to have a causative role in atherosclerosis and other vascular diseases, including restenosis due to vein engraftment; here, we demonstrate their rapid response to arterial wire injury, recapitulating the endothelial damage seen in PCI procedures. Using wild-type mice, we demonstrate accumulation of MC in the femoral artery post-acute wire injury, with rapid activation and degranulation, resulting in neointimal hyperplasia, which was not observed in MC-deficient KitW-sh/W-sh mice. Furthermore, neutrophils, macrophages, and T cells were abundant in the wild-type mice area of injury but reduced in the KitW-sh/W-sh mice. Following bone-marrow-derived MC (BMMC) transplantation into KitW-sh/W-sh mice, not only was the neointimal hyperplasia induced, but the neutrophil, macrophage, and T-cell populations were also present in these transplanted mice. To demonstrate the utility of MC as a target for therapy, we administered the MC stabilizing drug, disodium cromoglycate (DSCG) immediately following arterial injury and were able to show a reduction in neointimal hyperplasia in wild-type mice. These studies suggest a critical role for MC in inducing the conditions and coordinating the detrimental inflammatory response seen post-endothelial injury in arteries undergoing revascularization procedures, and by targeting the rapid MC degranulation immediately post-surgery with DSCG, this restenosis may become a preventable clinical complication.


Subject(s)
Atherosclerosis , Percutaneous Coronary Intervention , Vascular System Injuries , Animals , Mice , Hyperplasia , Mast Cells , Arteries , Constriction, Pathologic
17.
Front Cardiovasc Med ; 10: 1153814, 2023.
Article in English | MEDLINE | ID: mdl-37324638

ABSTRACT

Background: Moderate severity aortic stenosis (AS) is poorly understood, is associated with subclinical myocardial dysfunction, and can lead to adverse outcome rates that are comparable to severe AS. Factors associated with progressive myocardial dysfunction in moderate AS are not well described. Artificial neural networks (ANNs) can identify patterns, inform clinical risk, and identify features of importance in clinical datasets. Methods: We conducted ANN analyses on longitudinal echocardiographic data collected from 66 individuals with moderate AS who underwent serial echocardiography at our institution. Image phenotyping involved left ventricular global longitudinal strain (GLS) and valve stenosis severity (including energetics) analysis. ANNs were constructed using two multilayer perceptron models. The first model was developed to predict change in GLS from baseline echocardiography alone and the second to predict change in GLS using data from baseline and serial echocardiography. ANNs used a single hidden layer architecture and a 70%:30% training/testing split. Results: Over a median follow-up interval of 1.3 years, change in GLS (≤ or >median change) could be predicted with accuracy rates of 95% in training and 93% in testing using ANN with inputs from baseline echocardiogram data alone (AUC: 0.997). The four most important predictive baseline features (reported as normalized % importance relative to most important feature) were peak gradient (100%), energy loss (93%), GLS (80%), and DI < 0.25 (50%). When a further model was run including inputs from both baseline and serial echocardiography (AUC 0.844), the top four features of importance were change in dimensionless index between index and follow-up studies (100%), baseline peak gradient (79%), baseline energy loss (72%), and baseline GLS (63%). Conclusions: Artificial neural networks can predict progressive subclinical myocardial dysfunction with high accuracy in moderate AS and identify features of importance. Key features associated with classifying progression in subclinical myocardial dysfunction included peak gradient, dimensionless index, GLS, and hydraulic load (energy loss), suggesting that these features should be closely evaluated and monitored in AS.

18.
Nat Genet ; 55(6): 964-972, 2023 06.
Article in English | MEDLINE | ID: mdl-37248441

ABSTRACT

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Vascular Diseases , Humans , Female , Genome-Wide Association Study , Vascular Diseases/genetics , Coronary Artery Disease/genetics
19.
Int J Cardiol ; 383: 15-23, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37149004

ABSTRACT

BACKGROUND: People with human immunodeficiency virus (HIV) infection (PWH) are at higher risk of myocardial infarction (MI) than those without HIV. About half of MIs in PWH are type 2 (T2MI), resulting from mismatch between myocardial oxygen supply and demand, in contrast to type 1 MI (T1MI), which is due to primary plaque rupture or coronary thrombosis. Despite worse survival and rising incidence in the general population, evidence-based treatment recommendations for T2MI are lacking. We used polygenic risk scores (PRS) to explore genetic mechanisms of T2MI compared to T1MI in PWH. METHODS: We derived 115 PRS for MI-related traits in 9541 PWH enrolled in the Centers for AIDS Research Network of Integrated Clinical Systems cohort with adjudicated T1MI and T2MI. We applied multivariate logistic regression analyses to determine the association with T1MI and T2MI. Based on initial findings, we performed gene set enrichment analysis of the top variants composing PRS associated with T2MI. RESULTS: We found that T1MI was strongly associated with PRS for cardiovascular disease, lipid profiles, and metabolic traits. In contrast, PRS for alcohol dependence and cholecystitis, significantly enriched in energy metabolism pathways, were predictive of T2MI risk. The association remained after the adjustment for actual alcohol consumption. CONCLUSIONS: We demonstrate distinct genetic traits associated with T1MI and T2MI among PWH further highlighting their etiological differences and supporting the role of energy regulation in T2MI pathogenesis.


Subject(s)
Anterior Wall Myocardial Infarction , HIV Infections , Myocardial Infarction , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Risk Factors , Anterior Wall Myocardial Infarction/complications , HIV Infections/epidemiology , HIV Infections/genetics , Myocardium
20.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37017084

ABSTRACT

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Subject(s)
Coronary Artery Disease , Hypertension , Myocardial Infarction , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Genome-Wide Association Study , Vascular Remodeling , Myocardial Infarction/metabolism , Hypertension/metabolism , Myocytes, Smooth Muscle/metabolism , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Transcription Factors/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...