Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Wiad Lek ; 76(9): 2034-2040, 2023.
Article in English | MEDLINE | ID: mdl-37898941

ABSTRACT

OBJECTIVE: The aim: To establish the level of antibacterial protection of the studied personal protective respiratory equipment set and its main components and compare antibacterial resistance of the personal protective respiratory equipment set in the presence and absence of filtering components. PATIENTS AND METHODS: Materials and methods: The proposed methodology for assessing biological protection parameters is based on testing the permeability of personal respiratory protection equipment for bacteria by the method of serial dilutions. Also additional culturing of separate components of the protective set on a separate media is carried out. The experiment was also repeated in the absence of filtering elements and when they were replaced by gauze masks. RESULTS: Results: The use of a fully equipped pneumatic helmet counteracted the penetration of the bacterial aerosol, which was manifested in the absence of growth on the media. The results obtained with the full configuration, as well as the indicators of the spread of bacteria when removing the filter elements and replacing them with gauze masks, showed that the device creates sufficient positive air pressure inside. The latter becomes a restraining factor that does not allow microorganisms to penetrate through the lower circuit. CONCLUSION: Conclusions: Increasing the duration of continuous operation of the conceptual model up to 24 hours, increasing the bacterial load on the filters do not lead to a deterioration in the properties of antibacterial protection. Bacterial aerosol did not penetrate into the inner space of pneumatic helmet.


Subject(s)
Respiratory Protective Devices , Humans , Masks , Bacteria , Aerosols , Anti-Bacterial Agents
2.
Vaccines (Basel) ; 10(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35214607

ABSTRACT

(1) Influenza viruses constantly change and evade prior immune responses, forcing seasonal re-vaccinations with updated vaccines. Current FDA-approved vaccine manufacturing technologies are too slow and/or expensive to quickly adapt to mid-season changes in the virus or to the emergence of pandemic strains. Therefore, cost-effective vaccine technologies that can quickly adapt to newly emerged strains are desirable. (2) The filamentous fungal host Thermothelomyces heterothallica C1 (C1, formerly Myceliophthora thermophila) offers a highly efficient and cost-effective alternative to reliably produce immunogens of vaccine quality at large scale. (3) We showed the utility of the C1 system expressing hemagglutinin (HA) and a HA fusion protein from different H1N1 influenza A virus strains. Mice vaccinated with the C1-derived HA proteins elicited anti-HA immune responses similar, or stronger than mice vaccinated with HA products derived from prototypical expression systems. A challenge study demonstrated that vaccinated mice were protected against the aggressive homologous viral challenge. (4) The C1 expression system is proposed as part of a set of protein expression systems for plug-and-play vaccine manufacturing platforms. Upon the emergence of pathogens of concern these platforms could serve as a quick solution for producing enough vaccines for immunizing the world population in a much shorter time and more affordably than is possible with current platforms.

3.
Pol Merkur Lekarski ; 50(300): 352-355, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36645679

ABSTRACT

In order to effectively protect from dangerous infectious agents, as well as coronavirus, the scientists of I. Horbachevsky Ternopil national medical university (Ukraine) developed a unique prototype of a mobile respiratory protection system with positive airflow - pneumatic helmet. AIM: To evaluate the bacterial permeability of the proposed concept model of the pneumohelmet in full and partial configuration. MATERIALS AND METHODS: With a generating device (compressor inhaler) an aerosol is created from bacterial suspension, which is directed to the inlet of the personal protective respiratory equipment. The outlet is directed at a Petri dish with meat-peptone broth. Evaluation of bacterial contamination is performed by calculating the colony-forming units by multiplying the indicator by the degree of dilution. The study is repeated with a partial configuration of the pneumatic helmet - the presence of only external, only internal filter or not using any filter components. RESULTS: The growth of Micrococcus luteus colonies on the placed nutrient medium when using the proposed conceptual model of the pneumatic helmet in full configuration was not obtained. Removal of the inner filter did not lead to a violation of the effectiveness of antibacterial protection, as bacteria were detected only on the outer side of filter No.2. The use of a conceptual model without filters made it possible to detect colonies of Micrococcus luteus on the medium and components of the device with the calculation of colony forming units in 3- and 4-fold dilutions. During 24 hours of operation, the bacterial load on the surface of the external filter increased significantly. However, no signs of malfunction of the pneumatic helmet were detected. CONCLUSIONS: The given results confirm the ability of the pneumatic helmet to counteract the penetration of bacteria from the environment during 6, 12, 24 hours of continuous operation. The protection was preserved even with partial configuration, which indicates the presence of a margin of reliability of this system.


Subject(s)
Head Protective Devices , Micrococcus luteus , Humans , Reproducibility of Results , Bacteria
4.
Tree Physiol ; 41(5): 791-800, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33105481

ABSTRACT

In the forest of Northern Hemisphere, the fungi Heterobasidion annosum (Fr.) Bref. s.l. causes severe root and stem rot diseases, dramatically reducing the wood quality of conifer trees. The hallmark of the host response during the infection process is the formation of necrotic lesions and reaction zones. To characterize physiochemical and molecular features of the necrotic lesion, we conducted artificial inoculations on Norway spruce plants at different developmental stages: seedlings, young and mature trees. The results were further compared against data available on the formation of reaction zones. Strong necrosis browning or enlarged necrotic lesions were observed in infected tissues. This was accompanied by elevated pH. However, the increased pH, around 6.0 in necrotic lesions, was not as high as that documented in reaction zones, above 7.0 as marked by the intensity of the blue colour in response to 2,6-dichlorophenol indophenol dye. Peroxidase activity increased in infected plants and RNA-seq analysis of necrotic lesions showed marked upregulation of defence-related genes. Our findings highlight similarities and differences between the reaction zone and necrotic lesion formation in response of conifer trees to biotic stress.


Subject(s)
Basidiomycota , Picea , Norway , Picea/genetics , Plant Diseases
6.
Sci Rep ; 10(1): 5250, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251355

ABSTRACT

Fungal plant pathogens remain a serious threat to the sustainable agriculture and forestry, despite the extensive efforts undertaken to control their spread. White root rot disease is threatening rubber tree (Hevea brasiliensis) plantations throughout South and Southeast Asia and Western Africa, causing tree mortality and severe yield losses. Here, we report the complete genome sequence of the basidiomycete fungus Rigidoporus microporus, a causative agent of the disease. Our phylogenetic analysis confirmed the position of R. microporus among the members of Hymenochaetales, an understudied group of basidiomycetes. Our analysis further identified pathogen's genes with a predicted role in the decay of plant cell wall polymers, in the utilization of latex components and in interspecific interactions between the pathogen and other fungi. We also detected putative horizontal gene transfer events in the genome of R. microporus. The reported first genome sequence of a tropical rubber tree pathogen R. microporus should contribute to the better understanding of how the fungus is able to facilitate wood decay and nutrient cycling as well as tolerate latex and utilize resinous extractives.


Subject(s)
Fungal Proteins/genetics , Latex/metabolism , Polyporales/genetics , Polyporales/pathogenicity , Wood/microbiology , Cell Wall/metabolism , Cell Wall/microbiology , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Fungal , Gene Transfer, Horizontal , Genome, Fungal , Host-Pathogen Interactions/genetics , Microbial Interactions/genetics , Phylogeny , Polyporales/metabolism , Secondary Metabolism , Wood/metabolism
7.
Plant Sci ; 289: 110247, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31623795

ABSTRACT

Conifer trees, including Norway spruce, are threatened by fungi of the Heterobasidion annosum species complex, which severely affect timber quality and cause economic losses to forest owners. The timely detection of infected trees is complicated, as the pathogen resides within the heartwood and sapwood of infected trees. The presence of the disease and the extent of the wood decay often becomes evident only after tree felling. Fourier-transform infrared (FT-IR) spectroscopy is a potential method for non-destructive sample analysis that may be useful for identifying infected trees in this pathosystem. We performed FT-IR analysis of 18 phloem, 18 xylem, and 18 needle samples from asymptomatic and symptomatic Norway spruce trees. FT-IR spectra from 1066 - 912 cm-1 could be used to distinguish phloem, xylem, and needle tissue extracts. FT-IR spectra collected from xylem and needle extracts could also be used to discriminate between asymptomatic and symptomatic trees using spectral bands from 1657 - 994 cm-1 and 1104 - 994 cm-1, respectively. A partial least squares regression model predicted the concentration of condensed tannins, a defense-related compound, in phloem of asymptomatic and symptomatic trees. This work is the first to show that FT-IR spectroscopy can be used for the identification of Norway spruce trees naturally infected with Heterobasidion spp.


Subject(s)
Basidiomycota/isolation & purification , Picea/microbiology , Plant Diseases/microbiology , Spectroscopy, Fourier Transform Infrared/methods , Phloem/microbiology , Plant Leaves/microbiology , Xylem/microbiology
8.
Planta ; 250(6): 1881-1895, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31485774

ABSTRACT

MAIN CONCLUSION: Two terpene compounds and four genes were identified as potential biomarkers for further evaluation for Scots pine susceptibility or tolerance against Heterobasidion annosum. Scots pine (Pinus sylvestris) is one of the main sources of timber in the boreal zone of Eurasia. Commercial pine plantations are vulnerable to root and butt rot disease caused by the fungus Heterobasidion annosum. The pathogen affects host growth rate, causes higher mortality and decreases in timber quality, resulting in considerable economic losses to forest owners. Genetic and biochemical factors contributing to Scots pine tolerance against H. annosum infection are not well understood. We assessed the predictive values of a set of potential genetic and chemical markers in a field experiment. We determined the expression levels of 25 genes and the concentrations of 36 terpenoid compounds in needles of 16 Scots pine trees randomly selected from a natural population prior to artificial infection. Stems of the same trees were artificially inoculated with H. annosum, and the length of necrotic lesions was documented 5 months post inoculation. Higher expression level of four genes included in our analysis and encoding predicted α-pinene synthase (two genes), geranyl diphosphate synthase (GPPS), and metacaspase 5 (MC5), could be associated with trees exhibiting increased levels of necrotic lesion formation in response to fungal inoculation. In contrast, concentrations of two terpenoid compounds, ß-caryophyllene and α-humulene, showed significant negative correlations with the lesion size. Further studies with larger sample size will help to elucidate new biomarkers or clarify the potential of the evaluated markers for use in Scots pine disease resistance breeding programs.


Subject(s)
Basidiomycota , Disease Resistance/genetics , Pinus sylvestris/microbiology , Plant Diseases/microbiology , Biomarkers/analysis , Genetic Markers , Pinus sylvestris/genetics , Pinus sylvestris/immunology , Plant Diseases/immunology , Plant Leaves/metabolism , Polymerase Chain Reaction , Terpenes/analysis , Terpenes/metabolism , Transcriptome
10.
BMC Genomics ; 20(1): 430, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31138126

ABSTRACT

BACKGROUND: The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. RESULTS: The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. CONCLUSIONS: The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.


Subject(s)
Genome, Fungal , Lignin/metabolism , Polyporales/genetics , ATP-Binding Cassette Transporters/genetics , Carbohydrate Metabolism , Cellulose/metabolism , Genomics , Pectins/metabolism , Peptide Hydrolases/genetics , Polyporales/enzymology , Polysaccharides/metabolism , Secondary Metabolism/genetics
11.
Epigenetics ; 14(1): 16-40, 2019 01.
Article in English | MEDLINE | ID: mdl-30633603

ABSTRACT

Heterobasidion parviporum is the most devastating fungal pathogen of conifer forests in Northern Europe. The fungus has dual life strategies, necrotrophy on living trees and saprotrophy on dead woods. DNA cytosine methylation is an important epigenetic modification in eukaryotic organisms. Our presumption is that the lifestyle transition and asexual development in H. parviporum could be driven by epigenetic effects. Involvements of DNA methylation in the regulation of aforementioned processes have never been studied thus far. RNA-seq identified lists of highly induced genes enriched in carbohydrate-active enzymes during necrotrophic interaction with host trees and saprotrophic sawdust growth. It also highlighted signaling- and transcription factor-related genes potentially associated with the transition of saprotrophic to necrotrophic lifestyle and groups of primary cellular activities throughout asexual development. Whole-genome bisulfite sequencing revealed that DNA methylation displayed pronounced preference in CpG dinucleotide context across the genome and mostly targeted transposable element (TE)-rich regions. TE methylation level demonstrated a strong negative correlation with TE expression, reinforcing the protective function of DNA methylation in fungal genome stability. Small groups of genes putatively subject to methylation transcriptional regulation in response to saprotrophic and necrotrophic growth in comparison with free-living mycelia were also explored. Our study reported on the first methylome map of a forest pathogen. Analysis of transcriptome and methylome variations associated with asexual development and different lifestyle strategies provided further understanding of basic biological processes in H. parviporum. More importantly, our work raised additional potential roles of DNA methylation in fungi apart from controlling the proliferation of TEs.


Subject(s)
Adaptation, Physiological , Basidiomycota/genetics , DNA Methylation , Transcriptome , Basidiomycota/pathogenicity , Basidiomycota/physiology , Genome, Fungal , Genomic Instability , Reproduction, Asexual
12.
BMC Plant Biol ; 19(1): 2, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606115

ABSTRACT

BACKGROUND: Root and butt rot of conifer trees caused by fungi belonging to the Heterobasidion annosum species complex is one of the most economically important fungal diseases in commercial conifer plantations throughout the Northern hemisphere. We investigated the interactions between Heterobasidion fungi and their host by conducting dual RNA-seq and chemical analysis on Norway spruce trees naturally infected by Heterobasidion spp. We analyzed host and pathogen transcriptome and phenolic and terpenoid contents of the spruce trees. RESULTS: Presented results emphasize the role of the phenylpropanoid and flavonoid pathways in the chemical defense of Norway spruce trees. Accumulation of lignans was observed in trees displaying symptoms of wood decay. A number of candidate genes with a predicted role in the higher level regulation of spruce defense responses were identified. Our data indicate a possible role of abscisic acid (ABA) signaling in the spruce defense against Heterobasidion infection. Fungal transcripts corresponding to genes encoding carbohydrate- and lignin-degrading enzymes, secondary metabolism genes and effector-like genes were expressed during the host colonization. CONCLUSIONS: Our results provide additional insight into defense strategies employed by Norway spruce trees against Heterobasidion infection. The potential applications of the identified candidate genes as markers for higher resistance against root and butt rot deserve further evaluation.


Subject(s)
Basidiomycota/genetics , Picea/microbiology , Plant Diseases/microbiology , RNA, Fungal/genetics , RNA, Plant/genetics , Basidiomycota/metabolism , Egg Proteins/metabolism , Gene Expression Profiling , Genes, Fungal/genetics , Genes, Plant/genetics , Phenols/metabolism , Phloem/metabolism , Picea/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plant Immunity , RNA, Plant/physiology , Sequence Analysis, RNA , Terpenes/metabolism , Transcriptome/genetics , Xenopus Proteins/metabolism , src-Family Kinases/metabolism
13.
Microb Ecol ; 77(3): 640-650, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30094615

ABSTRACT

Plants live in close association with microbial symbionts, which may affect the host fitness, productivity, and tolerance against biotic and abiotic stressors. The composition of plant microbial communities is influenced by many biotic and abiotic factors, but little is known about the effect of plant pathogens on the structure of these communities. In this study, we investigated the structure of bacterial communities associated with different tissues of asymptomatic and symptomatic (Heterobasidion-rotten) Norway spruce (Picea abies (L.) Karst.) trees. Our results demonstrated that each of the investigated anatomic tissues (root, bark, down stem, upper stem, and needles) harbored a unique bacterial assemblage. However, the health status of the host trees had little effect on the structure of bacterial communities, as the only significant differences among asymptomatic and symptomatic trees were found in the composition of the bacterial communities of needles. Proteobacteria was predominant in all anatomic regions with the highest abundance in needles (86.7%), whereas Actinobacteria showed an opposite trend, being more abundant in the woody tissues than in needles. Additionally, we performed profiling of terpenoid compounds present in spruce xylem and phloem. Total concentrations of monoterpenes and sesquiterpenes were considerably higher in asymptomatic trees. However, we found no significant correlations between terpenoid profiles of spruce trees and the composition of their bacterial communities. Our results provide an insight into the diversity of bacteria associated with Norway spruce tree tissues. At the same time, the health status and terpenoid content of host trees had a limited effect on the composition of bacterial communities in our survey.


Subject(s)
Basidiomycota/physiology , Microbiota , Picea/microbiology , Plant Diseases/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Monoterpenes/analysis , Monoterpenes/metabolism , Norway , Picea/chemistry , Picea/metabolism , Wood/chemistry , Wood/metabolism , Wood/microbiology
14.
Front Plant Sci ; 9: 793, 2018.
Article in English | MEDLINE | ID: mdl-29946332

ABSTRACT

Root and butt rot caused by members of the Heterobasidion annosum species complex is the most economically important disease of conifer trees in boreal forests. Wood decay in the infected trees dramatically decreases their value and causes considerable losses to forest owners. Trees vary in their susceptibility to Heterobasidion infection, but the genetic determinants underlying the variation in the susceptibility are not well-understood. We performed the identification of Norway spruce genes associated with the resistance to Heterobasidion parviporum infection using genome-wide exon-capture approach. Sixty-four clonal Norway spruce lines were phenotyped, and their responses to H. parviporum inoculation were determined by lesion length measurements. Afterwards, the spruce lines were genotyped by targeted resequencing and identification of genetic variants (SNPs). Genome-wide association analysis identified 10 SNPs located within 8 genes as significantly associated with the larger necrotic lesions in response to H. parviporum inoculation. The genetic variants identified in our analysis are potential marker candidates for future screening programs aiming at the differentiation of disease-susceptible and resistant trees.

15.
Environ Microbiol Rep ; 10(5): 532-541, 2018 10.
Article in English | MEDLINE | ID: mdl-29727054

ABSTRACT

Plant microbiome plays an important role in maintaining the host fitness. Despite a significant progress in our understanding of the plant microbiome achieved in the recent years, very little is known about the effect of plant pathogens on composition of microbial communities associated with trees. In this study, we analysed the mycobiome of different anatomic parts of asymptomatic and symptomatic Norway spruce trees naturally infected by Heterobasidion spp. We also investigated the primary impact of the disease on the fungal communities, which are associated with Norway spruce trees. Our results demonstrate that the structure of fungal communities residing in the wood differed significantly among symptomatic and asymptomatic Heterobasidion-infected trees. However, no significant differences were found in the other anatomic regions of the trees. The results also show that not only each of individual tree tissues (wood, bark, needles and roots) harbours a unique fungal community, but also that symptomatic trees were more susceptible to co-infection by other wood-degrading fungi compared to the asymptomatic ones.


Subject(s)
Basidiomycota/physiology , Mycobiome , Picea/microbiology , Plant Diseases/microbiology , Biodiversity , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Mycobiome/genetics , Plant Structures/microbiology , Sequence Analysis, DNA
16.
BMC Genomics ; 19(1): 220, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29580224

ABSTRACT

BACKGROUND: Heterobasidion parviporum is an economically most important fungal forest pathogen in northern Europe, causing root and butt rot disease of Norway spruce (Picea abies (L.) Karst.). The mechanisms underlying the pathogenesis and virulence of this species remain elusive. No reference genome to facilitate functional analysis is available for this species. RESULTS: To better understand the virulence factor at both phenotypic and genomic level, we characterized 15 H. parviporum isolates originating from different locations across Finland for virulence, vegetative growth, sporulation and saprotrophic wood decay. Wood decay capability and latitude of fungal origins exerted interactive effects on their virulence and appeared important for H. parviporum virulence. We sequenced the most virulent isolate, the first full genome sequences of H. parviporum as a reference genome, and re-sequenced the remaining 14 H. parviporum isolates. Genome-wide alignments and intrinsic polymorphism analysis showed that these isolates exhibited overall high genomic similarity with an average of at least 96% nucleotide identity when compared to the reference, yet had remarkable intra-specific level of polymorphism with a bias for CpG to TpG mutations. Reads mapping coverage analysis enabled the classification of all predicted genes into five groups and uncovered two genomic regions exclusively present in the reference with putative contribution to its higher virulence. Genes enriched for copy number variations (deletions and duplications) and nucleotide polymorphism were involved in oxidation-reduction processes and encoding domains relevant to transcription factors. Some secreted protein coding genes based on the genome-wide selection pressure, or the presence of variants were proposed as potential virulence candidates. CONCLUSION: Our study reported on the first reference genome sequence for this Norway spruce pathogen (H. parviporum). Comparative genomics analysis gave insight into the overall genomic variation among this fungal species and also facilitated the identification of several secreted protein coding genes as putative virulence factors for the further functional analysis. We also analyzed and identified phenotypic traits potentially linked to its virulence.


Subject(s)
Basidiomycota/genetics , Basidiomycota/isolation & purification , Genome, Viral , Genomics/methods , Picea/microbiology , Plant Diseases/microbiology , Virulence Factors/genetics , Polymorphism, Single Nucleotide
17.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28481341

ABSTRACT

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Subject(s)
Betula/genetics , Genome, Plant , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Adaptation, Biological/genetics , Betula/physiology , Finland , Gene Duplication , Genetics, Population , Phylogeny , Population Density
18.
Fungal Biol ; 121(2): 158-171, 2017 02.
Article in English | MEDLINE | ID: mdl-28089047

ABSTRACT

The molecular mechanisms underlying the interaction of the pathogen, Heterobasidion annosum s.l., the conifer tree and the biocontrol fungus, Phlebiopsis gigantea have not been fully elucidated. Members of the cytochrome P450 (CYP) protein family may contribute to the detoxification of components of chemical defence of conifer trees by H. annosum during infection. Additionally, they may also be involved in the interaction between H. annosum and P. gigantea. A genome-wide analysis of CYPs in Heterobasidion irregulare was carried out alongside gene expression studies. According to the Standardized CYP Nomenclature criteria, the H. irregulare genome has 121 CYP genes and 17 CYP pseudogenes classified into 11 clans, 35 families, and 64 subfamilies. Tandem CYP arrays originating from gene duplications and belonging to the same family and subfamily were found. Phylogenetic analysis showed that all the families of H. irregulare CYPs were monophyletic groups except for the family CYP5144. Microarray analysis revealed the transcriptional pattern for 130 transcripts of CYP-encoding genes during growth on culture filtrate produced by P. gigantea. The high level of P450 gene diversity identified in this study could result from extensive gene duplications presumably caused by the high metabolic demands of H. irregulare in its ecological niches.


Subject(s)
Basidiomycota/enzymology , Cytochrome P-450 Enzyme System/analysis , Basidiomycota/genetics , Basidiomycota/isolation & purification , Cytochrome P-450 Enzyme System/genetics , Gene Expression Profiling , Genes, Fungal , Genome, Fungal , Plant Diseases/microbiology , Tracheophyta/microbiology
19.
BMC Genomics ; 17: 234, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26980399

ABSTRACT

BACKGROUND: The basidiomycete Rigidoporus microporus is a fungus that causes the white rot disease of the tropical rubber tree, Hevea brasiliensis, the major source of commercial natural rubber. Besides its lifestyle as a pathogen, the fungus is known to switch to saprotrophic growth on wood with the ability to degrade both lignin and cellulose. There is almost no genomic or transcriptomic information on the saprotrophic abilities of this fungus. In this study, we present the fungal transcriptomic profiles during saprotrophic growth on rubber wood. RESULTS: A total of 266.6 million RNA-Seq reads were generated from six libraries of the fungus growing either on rubber wood or without wood. De novo assembly produced 34, 518 unigenes with an average length of 2179 bp. Annotation of unigenes using public databases; GenBank, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO) produced 25, 880 annotated unigenes. Transcriptomic profiling analysis revealed that the fungus expressed over 300 genes encoding lignocellulolytic enzymes. Among these, 175 genes were up-regulated in rubber wood. These include three members of the glycoside hydrolase family 43, as well as various glycosyl transferases, carbohydrate esterases and polysaccharide lyases. A large number of oxidoreductases which includes nine manganese peroxidases were also significantly up-regulated in rubber wood. Several genes involved in fatty acid metabolism and degradation as well as natural rubber degradation were expressed in the transcriptome. Four genes (acyl-CoA synthetase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA acetyltransferase) potentially involved in rubber latex degradation pathway were also induced. A number of ATP binding cassette (ABC) transporters and hydrophobin genes were significantly expressed in the transcriptome during saprotrophic growth. Some genes related to energy metabolism were also induced. CONCLUSIONS: The analysed data gives an insight into the activation of lignocellulose breakdown machinery of R. microporus. This study also revealed genes with relevance in antibiotic metabolism (e.g. cephalosporin esterase) as well as those with potential applications in fatty acid degradation. This is the first study on the transcriptomic analysis of R. microporus on rubber wood and should serve as a pioneering resource for future studies of the fungus at the genomic or transcriptomic level.


Subject(s)
Coriolaceae/growth & development , Coriolaceae/genetics , Hevea/microbiology , Transcriptome , Gene Expression Regulation, Fungal , Genes, Fungal , Lignin/metabolism , Polysaccharides/metabolism , Sequence Analysis, RNA , Wood/microbiology
20.
Fungal Biol ; 120(3): 376-84, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26895866

ABSTRACT

Members of Heterobasidion annosum species complex are widely regarded as the most destructive fungal pathogens of conifer trees in the boreal and temperate zones of Northern hemisphere. To invade and colonise their host trees, Heterobasidion fungi must overcome components of host chemical defence, including terpenoid oleoresin and phenolic compounds. ABC transporters may play an important role in this process participating in the export of toxic host metabolites and maintaining their intracellular concentration below the critical level. We have identified and phylogenetically classified Heterobasidion genes encoding ABC transporters and closely related ABC proteins. The number of ABC proteins in the Heterobasidion genome is one of the lowest among analysed species of Agaricomycotina. Using quantitative RT-PCR, we have analysed transcriptional response of Heterobasidion ABC transporter-encoding genes to monoterpenes as well as their expression profile during growth on pine wood in comparison to the growth on defined media. Several ABC transporters were up-regulated during growth on pine wood. The ABC-transporter encoding gene ABCG1.1 was induced both during growth of H. annosum on pine wood and upon exposure to monoterpenes. Our experimental data demonstrate the differential responses of Heterobasidion ABC genes to growth conditions and chemical stressors. The presented results suggest a potential role of Heterobasidion ABC-G transporters in the resistance to the components of conifer chemical defence.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Basidiomycota/enzymology , Basidiomycota/genetics , Gene Expression Profiling , Gene Order , Genome, Fungal , Antifungal Agents/metabolism , Basidiomycota/drug effects , Basidiomycota/growth & development , Monoterpenes/metabolism , Pinus/microbiology , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...