Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 363: 121434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861886

ABSTRACT

Despite benefits such as lower water and working volume requirements, thermophilic high solids anaerobic digestion (THSAD) often fails due to the rapid build-up of volatile fatty acids (VFAs) and the associated drop in pH. Use of conductive materials (CM) can promote THSAD through stimulation of direct interspecies electron transfer (DIET), while the need for their constant dosing due to poor separation from effluent impairs economic feasibility. This study used an approach of spatially separating magnetite and granular activated carbon (GAC) from the organic fraction of municipal solid waste (OFMSW) in a single reactor for THSAD. GAC and magnetite addition could both mitigate the severe inhibition of methanogenesis after VFAs build-up to ∼28-30 g/L, while negligible methane production was observed in the control group. The highest methane yield (286 mL CH4/g volatile solids (VS)) was achieved in magnetite-added reactors, while the highest maximum CH4 production rates (26.38 mL CH4/g VS/d) and lowest lag-phase (2.83 days) were obtained in GAC-added reactors. The enrichment of GAC and magnetite biofilms with various syntrophic and potentially electroactive microbial groups (Ruminiclostridium 1, Clostridia MBA03, Defluviitoga, Lentimicrobiaceae) in different relative abundances indicates the existence of specific preferences of these groups for the nature of CM. According to predicted basic metabolic functions, CM can enhance cellular processes and signals, lipid transport and metabolism, and methane metabolism, resulting in improved methane production. Rearrangement of metabolic pathways, formation of pili-like structures, enrichment of biofilms with electroactive groups and a significant improvement in THSAD performance was attributed to the enhancement of the DIET pathway. Promising results obtained in this work due to the spatial separation of the bulk OFMSW and CM can be useful for modeling larger-scale THSAD systems with better recovery of CM and cost-effectiveness.


Subject(s)
Bioreactors , Methane , Solid Waste , Anaerobiosis , Methane/metabolism , Fatty Acids, Volatile/metabolism , Refuse Disposal/methods , Ferrosoferric Oxide/chemistry
2.
J Environ Manage ; 341: 118124, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37172349

ABSTRACT

Currently, the phenomenon of direct interspecies electron transfer (DIET) is of great interest in the technology of anaerobic digestion (AD) due to potential performance benefits. However, the conditions for the occurrence of DIET and its limits on improving AD under conditions close to real have not been studied enough. This research is concentrated on the effect of conductive carbon cloth (R3), in comparison with a dielectric fiberglass cloth (R2) and control (R1), on the AD performance in large (90 L) thermophilic reactors, fed with a mixture of simulated organic fraction of municipal solid waste and sewage sludge. While organic loading rate (OLR) was gradually increased from 2.4 to 8.66 kg VS/(m3 day), a statistically significant (p < 0.05) difference in biogas production was observed between R1 and both R2 and R3. However, at a maximum OLR of 12.12 kg VS/(m3 day) in R3, an increase in biogas production (p < 0.05) was observed both compared to R1 (by 8.97%) and R2 (by 4.24%). The content of volatile fatty acids in R3 as a whole was the lowest, especially at the maximum OLR. Biofilm on carbon cloth was rich in syntrophic microorganisms of the genera Tepidanaerobacter, as well as Defluviitoga, capable of DIET in mixed cultures with Methanothrix, which was the most abundant methanogen in biofilm. Suspended Bifidobacterium, Fervidobacterium and Anaerobaculum were negatively affected, while Defluviitoga, Methanothermobacter and Methanosarcina, on the contrary, were positively affected by the increase in OLR and showed, respectively, a negative and positive correlation (p < 0.05) with the main AD performance parameters.


Subject(s)
Carbon , Microbiota , Anaerobiosis , Biofuels , Bacteria , Sewage , Bioreactors/microbiology , Methane
3.
Bioresour Technol ; 377: 128966, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990327

ABSTRACT

Various conductive materials and their dielectric counterparts were used to get deeper insights into contribution of direct interspecies electron transfer (DIET) in improving methanogenesis from highly concentrated volatile fatty acids (12.5 g/L). Potential CH4 yield, maximum CH4 production rate and lag phase were significantly (up to 1.4, 3.9 and 2.0 times, respectively) improved with addition of stainless-steel mesh (SM) and carbon felt (CF) compared to both control and dielectric counterparts (p < 0.05). kapp increased by 82% for SM and 63% for CF compared to control (p < 0.05). Short thick pili-like structures up to 150 nm in width were formed only in CF and SM biofilms, however, were more abundant for SM. Ureibacillus and Limnochordia specific for SM biofilms, and Coprothermobacter and Ca. Caldatribacterium for CF biofilms, were considered electrogenic. Promotion of DIET by conductive materials is governed by many factors, including specificity of electrogenic groups to material surface.


Subject(s)
Fatty Acids, Volatile , Methane , Electron Transport , Carbon , Electric Conductivity , Stainless Steel , Anaerobiosis , Bioreactors
4.
Bioresour Technol ; 376: 128919, 2023 May.
Article in English | MEDLINE | ID: mdl-36934902

ABSTRACT

The performance and kinetics response of thermophilic semi-continuous dark fermentation (DF) of simulated complex carbohydrate-rich waste was investigated at various hydraulic retention times (HRT) (2, 2.5, and 3 d) and compared with data obtained from biochemical hydrogen potential assay (BHP). A culture of Thermoanaerobacterium thermosaccharolyticum was used as the inoculum and dominated both in BHP and semi-continuous reactor. Both the modified Gompertz and first-order models described the DF kinetics well (R2 = 0.97-1.00). HRT of 2.5 d was found to be optimal in terms of maximum hydrogen production rate and hydrogen potential, which were 3.97 and 1.26 times higher, respectively, than in BHP. The hydrolysis constant was highest at HRT of 3 d and was closest to the value obtained in the BHP. Overall, BHP has been shown to be a useful tool for predicting H2 potential and the hydrolysis constant, while the maximum H2 production rate is greatly underestimated.


Subject(s)
Bioreactors , Hydrogen , Fermentation , Kinetics , Clostridium
5.
Sci Total Environ ; 839: 156073, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35618137

ABSTRACT

The activation of direct interspecies electron transfer (DIET) by the supplementation of conductive materials is one of the effective and available methods to enhance anaerobic digestion (AD). Microorganisms that colonize the surface of these materials form biofilms, the study of which could provide new insights into the character of the DIET process and its effect on AD. The present study focused on AD performance, microbial community, as well as morphological and topological features of biofilms on various materials used to promote DIET during AD of low-concentration swine manure. The best AD characteristics were observed in stainless steel mesh (SM)/digested cow manure (CM) and polyester felt (PF)/digested sewage sludge (SS) combinations used as material/inoculum, respectively. Thus, potential methane yields in CM-SM and SS-PF were up to 26.4% and 26.2% higher compared to the corresponding controls. Microbial analysis of biofilms revealed the dominance of putatively syntrophic bacteria of the MBA03 group of the Limnochordia class in CM inoculated reactors, and syntrophic proteolytic bacteria of the genus Coprothermobacter and acetogenic Clostridium sensu stricto 1, known for their ability to carry out DIET, in SS inoculated reactors. Biofilms on non-conductive materials contained pili-like structures, which were observed only in SS inoculated reactors. Polyester felt tended to biofoul better than carbon felt, resulting in up to 2.8, 3.2 and 1.8 higher nucleic acid, extracellular polymeric substances, and total biomass content, respectively, depending on the inoculum. These results provide new insights into the different types of DIET that can occur in low-loaded AD systems with attached growth.


Subject(s)
Bioreactors , Manure , Anaerobiosis , Animals , Electrons , Methane , Polyesters , Sewage/microbiology , Stainless Steel , Swine
6.
Molecules ; 25(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233608

ABSTRACT

A large amount of the current literature dedicated to solid states of active pharmaceutical ingredients (APIs) pays special attention to polymorphism of flavonoids. Taxifolin (also known as dihydroquercetin) is an example of a typical flavonoid. Some new forms of taxifolin have been reported previously, however it is still unclear whether they represent polymorphic modifications. In this paper, we tried to answer the question about the taxifolin polymorphism. Taxifolin microtubes and taxifolin microspheres were synthesized from raw taxifolin API using several methods of crystal engineering. All forms were described with the help of spectral methods, scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), and thermal analysis (TA). SEM reveals that the morphology of the solid phase is very specific for each sample. Although XRPD patterns of raw taxifolin and microtubes look similar, their TA profiles differ significantly. At the same time, raw taxifolin and microspheres have nearly identical thermograms, while XRPD shows that the former is a crystalline and the latter is an amorphous substance. Only the use of complex analyses allowed us to put the puzzle together and to confirm the polymorphism of taxifolin. This article demonstrates that taxifolin microtubes are a pseudopolymorphic modification of raw taxifolin.


Subject(s)
Quercetin/analogs & derivatives , Chemistry, Pharmaceutical , Magnetic Resonance Spectroscopy , Molecular Structure , Particle Size , Quercetin/chemistry , Quercetin/classification , Spectrum Analysis , Structure-Activity Relationship , Thermogravimetry , X-Ray Diffraction
7.
Environ Technol ; 40(9): 1146-1155, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29237330

ABSTRACT

Treatment of sewage sludge (SS) by biodegradable polyacrylamide-based flocculants (PAM) is considered to be an effective way to increase total solids' (TS) content prior to anaerobic digestion (AD). However, data on how PAM addition influences the efficiency of AD process are quite contradictory; moreover, no data are available for thermophilic AD (TAD). This study showed that at an optimal inoculum-to-substrate ratio (ISR, 55/45), PAM addition resulted in some decrease in initial methane production during the TAD of SS due to the formation of large flocs (up to 2-3 mm in diameter), which deteriorated the mass transfer. However, at non-optimal ISR (40/60), which led to the destabilization of TAD, PAM addition (40 mg/g TS) could restore the methanogenesis despite the inhibiting accumulation of volatile fatty acids (14-15 g/l) and pH drop (5.5). The observed positive effect of PAM-forced flocculation proposes a new interesting alternative for recovery of 'soured' reactors.


Subject(s)
Bioreactors , Sewage , Anaerobiosis , Cations , Fatty Acids, Volatile , Methane
SELECTION OF CITATIONS
SEARCH DETAIL