Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453241

ABSTRACT

A previously developed model to predict antibacterial activity of ionic liquids against a resistant A. baumannii strain was used to assess activity of phosphonium ionic liquids. Their antioxidant potential was additionally evaluated with newly developed models, which were based on public data. The accuracy of the models was rigorously evaluated using cross-validation as well as test set prediction. Six alkyl triphenylphosphonium and alkyl tributylphosphonium bromides with the C8, C10, and C12 alkyl chain length were synthesized and tested in vitro. Experimental studies confirmed their activity against A. baumannii as well as showed pronounced antioxidant properties. These results suggest that phosphonium ionic liquids could be promising lead structures against A. baumannii.

2.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429999

ABSTRACT

Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 - 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.


Subject(s)
Acinetobacter baumannii/drug effects , Bacterial Infections/drug therapy , Imidazoles/chemistry , Pyridines/chemistry , Acinetobacter baumannii/pathogenicity , Bacterial Infections/microbiology , Drug Resistance, Multiple , Humans , Imidazoles/chemical synthesis , Ionic Liquids/chemical synthesis , Ionic Liquids/chemistry , Pyridines/chemical synthesis , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Structure-Activity Relationship
3.
Comput Biol Chem ; 90: 107407, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33191110

ABSTRACT

Natural products as well as their derivatives play a significant role in the discovery of new biologically active compounds in the different areas of our life especially in the field of medicine. The synthesis of compounds produced from natural products including cytisine is one approach for the wider use of natural substances in the development of new drugs. QSAR modeling was used to predict and select of biologically active cytisine-containing 1,3-oxazoles. The eleven most promising compounds were identified, synthesized and tested. The activity of the synthesized compounds was evaluated using the disc diffusion method against C. albicans M 885 (ATCC 10,231) strain and clinical fluconazole-resistant Candida krusei strain. Molecular docking of the most active compounds as potential inhibitors of the Candida spp. glutathione reductase was performed using the AutoDock Vina. The built classification models demonstrated good stability, robustness and predictive power. The eleven cytisine-containing 1,3-oxazoles were synthesized and their activity against Candida spp. was evaluated. Compounds 10, 11 as potential inhibitors of the Candida spp. glutathione reductase demonstrated the high activity against C. albicans M 885 (ATCC 10,231) strain and clinical fluconazole-resistant Candida krusei strain. The studied compounds 10, 11 present the interesting scaffold for further investigation as potential inhibitors of the Candida spp. glutathione reductase with the promising antifungal properties. The developed models are publicly available online at http://ochem.eu/article/120720 and could be used by scientists for design of new more effective drugs.


Subject(s)
Alkaloids/pharmacology , Antifungal Agents/pharmacology , Candida/drug effects , Glutathione Reductase/antagonists & inhibitors , Molecular Docking Simulation , Oxazoles/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Azocines/chemical synthesis , Azocines/chemistry , Azocines/pharmacology , Candida/enzymology , Glutathione Reductase/metabolism , Microbial Sensitivity Tests , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Quantitative Structure-Activity Relationship , Quinolizines/chemical synthesis , Quinolizines/chemistry , Quinolizines/pharmacology
4.
Comput Biol Chem ; 74: 294-303, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29698921

ABSTRACT

Based on modern literature data about biological activity of E7010 derivatives, a series of new sulfonamides as potential anticancer drugs were rationally designed by QSAR modeling methods Сlassification learning QSAR models to predict the tubulin polymerization inhibition activity of novel sulfonamides as potential anticancer agents were created using the Online Chemical Modeling Environment (OCHEM) and are freely available online on OCHEM server at https://ochem.eu/article/107790. A series of sulfonamides with predicted activity were synthesized and tested against 60 human cancer cell lines with growth inhibition percent values. The highest antiproliferative activity against leukemia (cell lines K-562 and MOLT-4), non-small cell lung cancer (cell line NCI-H522), colon cancer (cell lines NT29 and SW-620), melanoma (cell lines MALME-3M and UACC-257), ovarian cancer (cell lines IGROV1 and OVCAR-3), renal cancer (cell lines ACHN and UO-31), breast cancer (cell line T-47D) was found for compounds 4-9. According to the docking results the compounds 4-9 induce cytotoxicity by the disruption of the microtubule dynamics by inhibiting tubulin polymerization via effective binding into colchicine domain, similar the E7010.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Sulfonamides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Machine Learning , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
5.
J Mol Graph Model ; 26(2): 591-4, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17433745

ABSTRACT

Volume learning algorithm (VLA) artificial neural network and partial least squares (PLS) methods were compared using the leave-one-out cross-validation procedure for prediction of relative potency of xenoestrogenic compounds to the estrogen receptor. Using Wilcoxon signed rank test we showed that VLA outperformed PLS by producing models with statistically superior results for a structurally diverse set of compounds comprising eight chemical families. Thus, CoMFA/VLA models are successful in prediction of the endocrine disrupting potential of environmental pollutants and can be effectively applied for testing of prospective chemicals prior their exposure to the environment.


Subject(s)
Algorithms , Estrogens/chemistry , Least-Squares Analysis , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Estrogens/metabolism , Estrogens, Non-Steroidal/chemistry , Estrogens, Non-Steroidal/metabolism , Models, Molecular , Molecular Structure , Neural Networks, Computer , Protein Binding , Quantitative Structure-Activity Relationship , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Xenobiotics/chemistry , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...