Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 91(16): 10484-10491, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31337210

ABSTRACT

An automated device has been developed to measure aqueous dimethyl sulfide (DMSaq), its precursor dimethylsulfoniopropionate (DMSP), and atmospheric gaseous dimethyl sulfide (DMSg). In addition to having a role in the oceanic atmosphere, DMS and DMSP have recently gained substantial interest within the biosciences and are suspected as chemoattractants for predators searching for prey. To provide the spatial resolution relevant for biogeochemical functions, fast and on-site analysis of these compounds is an important technique. The system described measures the dimethyl sulfur compounds by sequential vaporization of DMSaq and DMSP to their gas phase, which is then analyzed by chemiluminescence detection (SVG-CL). The device has five analysis modes (full, DMS, water, gas, and DMSP mode) that can be selected by the user depending on the required analyte or desired sampling rate. Seawater analyses were performed by the developed SVG-CL system and, simultaneously, by an ion molecule reaction-mass spectrometer and a gas chromatograph-flame photometric detector to verify quantitative analysis results. Results obtained by the new method/device agreed well with those by the other methods. Detection limits of the SVG-CL system are 0.02 ppbv and 0.04 nM for DMSg and DMSaq/DMSP, respectively, which are much better than those of the mass spectrometer. The SVG-CL system can be easily installed and operated on a boat. Spatial variability in DMS and DMSP off the coast of Japan were obtained, showing significant changes in the concentrations of the components at the brackish/saline water interface and at the channel between the closed and open seas.

2.
J Hazard Mater ; 278: 426-32, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24997258

ABSTRACT

Rapid decomposition of wastewater contaminants using sulfurized limonite (S-limonite) was investigated. Limonite is used for desulfurization of biogases, and S-limonite is obtained from desulfurization plants as solid waste. In this work, the profitable use of S-limonite in water treatment was examined. The divalent Fe in S-limonite was expected to produce OH radicals, as Fe(2+) ions and limonite thermally treated with H2 do. Methylene blue was used for batch-wise monitoring of the decomposition performance. The decomposition rate was fast and the methylene blue solution color disappeared in only 10s when a small amount of H2O2 was added (1mM in the sample solution) in the presence of S-limonite. The OH radicals were formed by a heterogeneous reaction on the S-limonite surface and Fenton reaction with dissolved Fe(2+). The decomposition of pentachlorophenol was also examined; it was successfully decomposed in batch-wise tests. The surfaces of limonite before sulfurization, S-limonite, and S-limonite after use for water treatment were performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that S-limonite reverted to limonite after being used for water treatment.


Subject(s)
Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Methylene Blue/chemistry , Sulfur/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Pentachlorophenol/chemistry , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...