Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(7)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36137523

ABSTRACT

We present a theory of optimal topological textures in nonlinear sigma-models with degrees of freedom living in the GrassmannianGr(M,N)manifold. These textures describe skyrmion lattices ofN-component fermions in a quantising magnetic field, relevant to the physics of graphene, bilayer and other multicomponent quantum Hall systems near integer filling factorsν > 1. We derive analytically the optimality condition, minimizing topological charge density fluctuations, for a general Grassmannian sigma modelGr(M,N)on a sphere and a torus, together with counting arguments which show that for any filling factor and number of components there is a critical value of topological chargedcabove which there are no optimal textures. Belowdca solution of the optimality condition on a torus is unique, while in the case of a sphere one has, in general, a continuum of solutions corresponding to new non-Goldstone zero modes, whose degeneracy is not lifted (via a order from disorder mechanism) by any fermion interactions depending only on the distance on a sphere. We supplement our general theoretical considerations with the exact analytical results for the case ofGr(2,4), appropriate for recent experiments in graphene.

2.
Phys Rev Lett ; 119(17): 176601, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219477

ABSTRACT

We study the time evolution after a quantum quench in a family of models whose degrees of freedom are fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in the initial state. Focusing on the behavior of entanglement, both spatial and between subsystems, we show that the model supports a state exhibiting combined area and volume-law entanglement, being characteristic of the quantum disentangled liquid. This behavior appears for one set of variables, which is related via a duality mapping to another set, where this structure is absent. Upon adding density interactions between the fermions, we identify an exact mapping to an XXZ spin chain in a random binary magnetic field, thereby establishing the existence of many-body localization with its logarithmic entanglement growth in a fully disorder-free system.

3.
Phys Rev Lett ; 118(26): 266601, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28707931

ABSTRACT

The venerable phenomena of Anderson localization, along with the much more recent many-body localization, both depend crucially on the presence of disorder. The latter enters either in the form of quenched disorder in the parameters of the Hamiltonian, or through a special choice of a disordered initial state. Here, we present a model with localization arising in a very simple, completely translationally invariant quantum model, with only local interactions between spins and fermions. By identifying an extensive set of conserved quantities, we show that the system generates purely dynamically its own disorder, which gives rise to localization of fermionic degrees of freedom. Our work gives an answer to a decades old question whether quenched disorder is a necessary condition for localization. It also offers new insights into the physics of many-body localization, lattice gauge theories, and quantum disentangled liquids.

4.
Nat Mater ; 15(7): 733-40, 2016 07.
Article in English | MEDLINE | ID: mdl-27043779

ABSTRACT

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.


Subject(s)
Magnetic Fields , Magnets , Models, Chemical , Quantum Theory , Solutions/chemistry , Spin Labels , Cold Temperature , Computer Simulation , Radiation Dosage
5.
Phys Rev Lett ; 113(18): 187201, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25396391

ABSTRACT

We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z(2) gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.

6.
Phys Rev Lett ; 110(18): 186802, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683231

ABSTRACT

We study quantum Hall ferromagnets with a finite density of topologically charged spin textures in the presence of internal degrees of freedom such as spin, valley, or layer indices, so that the system is parametrized by a d-component spinor field. In the absence of anisotropies we find a hexagonal Skyrmion lattice that completely breaks the underlying SU(d) symmetry with the low-lying excitation spectrum separating into d(2) - 1 gapless acoustic magnetic modes and a magnetophonon. The ground state charge density modulations, which inevitably exist in these lattices, vanish exponentially in d. We discuss the role of effective mass anisotropy for SU(3)-valley Skyrmions relevant to experiments with AlAs quantum wells. Here we find a transition which breaks a sixfold rotational symmetry of the triangular lattice, followed by the formation of a square lattice at large values of anisotropy strength.

7.
Phys Rev Lett ; 109(10): 106403, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005309

ABSTRACT

A highly nonthermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance downstream from the contact has been observed in recent experiments [C. Altimiras et al., Phys. Rev. Lett. 105, 056803 (2010)]. Here we present an exact treatment of a minimal model for the system at filling factor ν=2, with results that account well for the observations.

8.
Phys Rev Lett ; 95(12): 127202, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197102

ABSTRACT

We report on results of specific heat measurements on single crystals of the frustrated quasi-2D spin-1/2 antiferromagnet Cs2CuCl4 (T(N)=0.595 K) in external magnetic fields B<12 T and for temperatures T>30 mK. Decreasing B from high fields leads to the closure of the field-induced gap in the magnon spectrum at a critical field Bc approximately = 8.51 T and a magnetic phase transition is clearly seen below Bc. In the vicinity of Bc, the phase transition boundary is well described by the power law Tc(B) proportional, variant (Bc-B)(1/phi), with the measured critical exponent phi approximately =1.5. These findings are interpreted as a Bose-Einstein condensation of magnons.

9.
Phys Rev Lett ; 90(13): 130402, 2003 Apr 04.
Article in English | MEDLINE | ID: mdl-12689271

ABSTRACT

We discuss the tunneling of phonon excitations across a potential barrier separating two condensates. It is shown that a strong barrier proves to be transparent for the excitations at low energy epsilon. Moreover, the transmission is reduced with increasing epsilon in contrast to the standard dependence. This anomalous behavior is due to the existence of a quasiresonance interaction. The origin of this interaction is a result of the formation of a special well determined by the density distribution of the condensate in the vicinity of a high barrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...