Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Vopr Virusol ; 68(5): 372-384, 2023 Nov 07.
Article in Russian | MEDLINE | ID: mdl-38156572

ABSTRACT

RELEVANCE: Ebola virus disease (EVD) is an acute infectious disease with an extremely high case fatality rate reaching up to 90%. EVD has become widely known since 2014-2016, when outbreak in West Africa occurred and led to epidemic, which caused travel-related cases on the territory of other continents. There are two vaccines against EVD, prequalified by WHO for emergency use, as well as a number of vaccines, approved by local regulators in certain countries. However, even with the availability of effective vaccines, the lack of data on immune correlates of protection and duration of protective immune response in humans and primates is limiting factor for effectively preventing the spread of EVD outbreaks. AIMS: This review highlights experience of use of EVD vaccines during outbreaks in endemic areas, summarizes data on vaccine immunogenicity in clinical trials, and discusses perspectives for further development and use of effective EVD vaccines.


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola , Animals , Humans , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Travel , Travel-Related Illness , Disease Outbreaks/prevention & control
2.
Acta Naturae ; 12(3): 114-123, 2020.
Article in English | MEDLINE | ID: mdl-33173601

ABSTRACT

The Middle East Respiratory Syndrome (MERS) is an acute inflammatory disease of the respiratory system caused by the MERS-CoV coronavirus. The mortality rate for MERS is about 34.5%. Due to its high mortality rate, the lack of therapeutic and prophylactic agents, and the continuing threat of the spread of MERS beyond its current confines, developing a vaccine is a pressing task, because vaccination would help limit the spread of MERS and reduce its death toll. We have developed a combined vector vaccine for the prevention of MERS based on recombinant human adenovirus serotypes 26 and 5. Studies of its immunogenicity have shown that vaccination of animals (mice and primates) induces a robust humoral immune response that lasts for at least six months. Studies of the cellular immune response in mice after vaccination showed the emergence of a specific CD4+ and CD8+ T cell response. A study of the vaccine protectivity conducted in a model of transgenic mice carrying the human DPP4 receptor gene showed that our vaccination protected 100% of the animals from the lethal infection caused by the MERS-CoV virus (MERS-CoV EMC/2012, 100LD50 per mouse). Studies of the safety and tolerability of the developed vaccine in rodents, rabbits, and primates showed a good safety profile and tolerance in animals; they revealed no contraindications for clinical testing.

SELECTION OF CITATIONS
SEARCH DETAIL