Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(1): e2207250120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574656

ABSTRACT

The pathological accumulation of the microtubule binding protein tau drives age-related neurodegeneration in a variety of disorders, collectively called tauopathies. In the most common tauopathy, Alzheimer's disease (AD), the accumulation of pathological tau strongly correlates with cognitive decline. The underlying molecular mechanisms that drive neurodegeneration in tauopathies remain incompletely understood and no effective disease modifying pharmacological interventions currently exist. Here, we show that tau toxicity depends on the highly conserved nuclear E3 ubiquitin ligase adaptor protein SPOP in a Caenorhabditis elegans model of tauopathy. Loss of function mutations in the C. elegans spop-1 gene significantly improves behavioral deficits in tau transgenic animals, while neuronal overexpression of SPOP-1 protein significantly worsens behavioral deficits. In addition, loss of spop-1 rescues a variety of tau-related phenotypes including the accumulation of total and phosphorylated tau protein, neurodegeneration, and shortened lifespan. Knockdown of SPOP-1's E3 ubiquitin ligase cul-3/Cullin3 does not improve tauopathy suggesting a non-degradative mechanism of action for SPOP-1. Suppression of disease-related phenotypes occurs independently of the nuclear speckle resident poly(A)-binding protein SUT-2/MSUT2. MSUT2 modifies tauopathy in mammalian neurons and in AD. Our work identifies SPOP as a novel modifier of tauopathy and a conceptual pathway for therapeutic intervention.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Tauopathies , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals, Genetically Modified , Alzheimer Disease/metabolism , Disease Models, Animal , Mammals/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Poly(A)-Binding Proteins/metabolism
2.
Geroscience ; 44(2): 747-761, 2022 04.
Article in English | MEDLINE | ID: mdl-35122183

ABSTRACT

Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.


Subject(s)
Caenorhabditis elegans Proteins , Tauopathies , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mice , Poly(A)-Binding Proteins/metabolism , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
3.
Neurobiol Dis ; 147: 105148, 2021 01.
Article in English | MEDLINE | ID: mdl-33184027

ABSTRACT

Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.


Subject(s)
Alzheimer Disease/pathology , Caenorhabditis elegans Proteins/metabolism , Exoribonucleases/metabolism , Nuclear Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , Tauopathies/pathology , Alzheimer Disease/metabolism , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , Humans , Phenotype , Tauopathies/metabolism
4.
Sci Transl Med ; 11(523)2019 12 18.
Article in English | MEDLINE | ID: mdl-31852801

ABSTRACT

Brain lesions composed of pathological tau help to drive neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Here, we identified the mammalian suppressor of tauopathy 2 (MSUT2) gene as a modifier of susceptibility to tau toxicity in two mouse models of tauopathy. Transgenic PS19 mice overexpressing tau, a model of AD, and lacking the Msut2 gene exhibited decreased learning and memory deficits, reduced neurodegeneration, and reduced accumulation of pathological tau compared to PS19 tau transgenic mice expressing Msut2 Conversely, Msut2 overexpression in 4RTauTg2652 tau transgenic mice increased pathological tau deposition and promoted the neuroinflammatory response to pathological tau. MSUT2 is a poly(A) RNA binding protein that antagonizes the canonical nuclear poly(A) binding protein PABPN1. In individuals with AD, MSUT2 abundance in postmortem brain tissue predicted an earlier age of disease onset. Postmortem AD brain tissue samples with normal amounts of MSUT2 showed elevated neuroinflammation associated with tau pathology. We observed co-depletion of MSUT2 and PABPN1 in postmortem brain samples from a subset of AD cases with higher tau burden and increased neuronal loss. This suggested that MSUT2 and PABPN1 may act together in a macromolecular complex bound to poly(A) RNA. Although MSUT2 and PABPN1 had opposing effects on both tau aggregation and poly(A) RNA tail length, we found that increased poly(A) tail length did not ameliorate tauopathy, implicating other functions of the MSUT2/PABPN1 complex in tau proteostasis. Our findings implicate poly(A) RNA binding proteins both as modulators of pathological tau toxicity in AD and as potential molecular targets for interventions to slow neurodegeneration in tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Animals , Carrier Proteins/genetics , Disease Models, Animal , Male , Mice , Mice, Transgenic , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Proteins/genetics , tau Proteins/genetics
5.
Biol Psychiatry ; 83(5): 438-446, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28751068

ABSTRACT

BACKGROUND: The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D2-family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. METHODS: To better understand how loss of D2-family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D2 receptors. RESULTS: We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D2-family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. CONCLUSIONS: Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Dopa Decarboxylase/metabolism , Dopamine/metabolism , Serotonin/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Dopa Decarboxylase/genetics , tau Proteins/toxicity
6.
Pharmacol Res Perspect ; 3(1): e00100, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25692018

ABSTRACT

One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon.

7.
PLoS One ; 9(4): e95922, 2014.
Article in English | MEDLINE | ID: mdl-24752144

ABSTRACT

Administration of the muscarinic agonist pilocarpine is commonly used to induce seizures in rodents for the study of epilepsy. Activation of muscarinic receptors has been previously shown to increase the production of endocannabinoids in the brain. Endocannabinoids act at the cannabinoid CB1 receptors to reduce neurotransmitter release and the severity of seizures in several models of epilepsy. In this study, we determined the effect of CB1 receptor activity on the induction in mice of seizures by pilocarpine. We found that decreased activation of the CB1 receptor, either through genetic deletion of the receptor or treatment with a CB1 antagonist, increased pilocarpine seizure severity without modifying seizure-induced cell proliferation and cell death. These results indicate that endocannabinoids act at the CB1 receptor to modulate the severity of pilocarpine-induced seizures. Administration of a CB1 agonist produced characteristic CB1-dependent behavioral responses, but did not affect pilocarpine seizure severity. A possible explanation for the lack of effect of CB1 agonist administration on pilocarpine seizures, despite the effects of CB1 antagonist administration and CB1 gene deletion, is that muscarinic receptor-stimulated endocannabinoid production is acting maximally at CB1 receptors to modulate sensitivity to pilocarpine seizures.


Subject(s)
Muscarinic Agonists/pharmacology , Pilocarpine/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Seizures/chemically induced , Seizures/metabolism , Animals , Cyclohexanols/pharmacology , Male , Mice , Mice, Knockout , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Receptor, Cannabinoid, CB1/genetics
9.
PLoS One ; 5(10): e13517, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20976005

ABSTRACT

Receptor internalization from the cell surface occurs through several mechanisms. Some of these mechanisms, such as clathrin coated pits, are well understood. The M(2) muscarinic acetylcholine receptor undergoes internalization via a poorly-defined clathrin-independent mechanism. We used isotope coded affinity tagging and mass spectrometry to identify the scaffolding protein, receptor for activated C kinase (RACK1) as a protein enriched in M(2)-immunoprecipitates from M(2)-expressing cells over those of non-M(2) expressing cells. Treatment of cells with the agonist carbachol disrupted the interaction of RACK1 with M(2). We further found that RACK1 overexpression inhibits the internalization and subsequent down regulation of the M(2) receptor in a receptor subtype-specific manner. Decreased RACK1 expression increases the rate of agonist internalization of the M(2) receptor, but decreases the extent of subsequent down-regulation. These results suggest that RACK1 may both interfere with agonist-induced sequestration and be required for subsequent targeting of internalized M(2) receptors to the degradative pathway.


Subject(s)
GTP-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Receptor, Muscarinic M2/metabolism , Receptors, Cell Surface/metabolism , Affinity Labels , Electrophoresis, Polyacrylamide Gel , Humans , Mass Spectrometry , Protein Transport , Receptors for Activated C Kinase
10.
Biochemistry ; 48(41): 9801-9, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19694481

ABSTRACT

Dihydroorotate dehydrogenases (DHODs) are FMN-containing enzymes that catalyze the conversion of dihydroorotate (DHO) to orotate in the de novo synthesis of pyrimidines. During the reaction, a proton is transferred from C5 of DHO to an active site base and the hydrogen at C6 of DHO is transferred to N5 of the isoalloxazine ring of the flavin as a hydride. In class 2 DHODs, a hydrogen bond network observed in crystal structures has been proposed to deprotonate the C5 atom of DHO. The active site base (Ser175 in the Escherichia coli enzyme) hydrogen bonds to a crystallographic water molecule that sits on a phenylalanine (Phe115 in the E. coli enzyme) and hydrogen bonds to a threonine (Thr178 in the E. coli enzyme), residues that are conserved in class 2 enzymes. The importance of these residues in the oxidation of DHO was investigated using site-directed mutagenesis. Mutating Ser175 to alanine had severe effects on the rate of flavin reduction, slowing it by more than 3 orders of magnitude. Changing the size and/or hydrophobicity of the residues of the hydrogen bond network, Thr178 and Phe115, slowed flavin reduction as much as 2 orders of magnitude, indicating that the active site base and the hydrogen bond network work together for efficient deprotonation of DHO.


Subject(s)
Escherichia coli/enzymology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Catalytic Domain , Dihydroorotate Dehydrogenase , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...