Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 20(1): 187, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36434616

ABSTRACT

BACKGROUND: Current therapeutic management of advanced melanoma patients largely depends on their BRAF mutation status. However, the vast heterogeneity of the tumors hampers the success of therapies targeting the MAPK/ERK pathway alone. Dissecting this heterogeneity will contribute to identifying key players in the oncogenic progression to tailor more effective therapies. METHODS: We performed a comprehensive molecular and phenotypic characterization of a panel of patient-derived BRAFV600E-positive melanoma cell lines. Transcriptional profiling was used to identify groups of coregulated genes whose expression relates to an increased migratory potential and a higher resistance. RESULTS: A decrease in sensitivity to MAPK/ERK pathway inhibition with vemurafenib or trametinib corresponded with an increasing quiescence and migratory properties of the cells. This was accompanied by the loss of transcriptional signatures of melanocytic differentiation, and the gain of stem cell features that conferred highly-resistant/mesenchymal-like cells with increased xenobiotic efflux capacity. Nevertheless, targeting of the implicated ABC transporters did not improve the response to vemurafenib, indicating that incomplete BRAF inhibition due to reduced drug uptake is not a main driver of resistance. Rather, indifference to MAPK/ERK pathway inhibition arose from the activation of compensatory signaling cascades. The PI3K/AKT pathway in particular showed a higher activity in mesenchymal-like cells, conferring a lower dependency on MAPK/ERK signaling and supporting stem-like properties that could be reverted by dual PI3K/mTOR inhibition with dactolisib. CONCLUSIONS: In case of MAPK/ERK independency, therapeutic focus may be shifted to the PI3K/AKT pathway to overcome late-stage resistance in melanoma tumors that have acquired a mesenchymal phenotype. Video Abstract.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm , Sulfonamides/pharmacology , Cell Line, Tumor , Melanoma/pathology
2.
Cell Commun Signal ; 19(1): 123, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930313

ABSTRACT

BACKGROUND: Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS: By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS: Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS: Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.


Subject(s)
Vemurafenib
3.
Front Genet ; 9: 108, 2018.
Article in English | MEDLINE | ID: mdl-29675033

ABSTRACT

Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic.

4.
Front Genet ; 7: 44, 2016.
Article in English | MEDLINE | ID: mdl-27148350

ABSTRACT

The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

5.
Cancer Res ; 75(1): 216-29, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25381152

ABSTRACT

BRAF mutations are associated with aggressive, less-differentiated and therapy-resistant colorectal carcinoma. However, the underlying mechanisms for these correlations remain unknown. To understand how oncogenic B-Raf contributes to carcinogenesis, in particular to aspects other than cellular proliferation and survival, we generated three isogenic human colorectal carcinoma cell line models in which we can dynamically modulate the expression of the B-Raf(V600E) oncoprotein. Doxycyclin-inducible knockdown of endogenous B-Raf(V600E) decreases cellular motility and invasion in conventional and three-dimensional (3D) culture, whereas it promotes cell-cell contacts and induces various hallmarks of differentiated epithelia. Importantly, all these effects are recapitulated by B-Raf (PLX4720, vemurafenib, and dabrafenib) or MEK inhibitors (trametinib). Surprisingly, loss of B-Raf(V600E) in HT29 xenografts does not only stall tumor growth, but also induces glandular structures with marked expression of CDX2, a tumor-suppressor and master transcription factor of intestinal differentiation. By performing the first transcriptome profiles of PLX4720-treated 3D cultures of HT29 and Colo-205 cells, we identify several upregulated genes linked to epithelial differentiation and effector functions, such as claudin-1, a Cdx-2 target gene encoding a critical tight junction component. Thereby, we provide a mechanism for the clinically observed correlation between mutant BRAF and the loss of Cdx-2 and claudin-1. PLX4720 also suppressed several metastasis-associated transcripts that have not been implicated as targets, effectors or potential biomarkers of oncogenic B-Raf signaling so far. Together, we identify a novel facet of clinically applied B-Raf or MEK inhibitors by showing that they promote cellular adhesion and differentiation of colorectal carcinoma cells.


Subject(s)
Colorectal Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Gene Knockdown Techniques , HT29 Cells , Humans , Mice , Mice, SCID , Mice, Transgenic , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics , Random Allocation , Signal Transduction , Xenograft Model Antitumor Assays
6.
Bioinformatics ; 28(18): i495-i501, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22962472

ABSTRACT

MOTIVATION: Cell migration is a complex process that is controlled through the time-sequential feedback regulation of protein signalling and gene regulation. Based on prior knowledge and own experimental data, we developed a large-scale dynamic network describing the onset and maintenance of hepatocyte growth factor-induced migration of primary human keratinocytes. We applied Boolean logic to capture the qualitative behaviour as well as short-and long-term dynamics of the complex signalling network involved in this process, comprising protein signalling, gene regulation and autocrine feedback. RESULTS: A Boolean model has been compiled from time-resolved transcriptome data and literature mining, incorporating the main pathways involved in migration from initial stimulation to phenotype progress. Steady-state analysis under different inhibition and stimulation conditions of known key molecules reproduces existing data and predicts novel interactions based on our own experiments. Model simulations highlight for the first time the necessity of a temporal sequence of initial, transient MET receptor (met proto-oncogene, hepatocyte growth factor receptor) and subsequent, continuous epidermal growth factor/integrin signalling to trigger and sustain migration by autocrine signalling that is integrated through the Focal adhesion kinase protein. We predicted in silico and verified in vitro that long-term cell migration is stopped if any of the two feedback loops are inhibited. AVAILABILITY: The network file for analysis with the R BoolNet library is available in the Supplementary Information. CONTACT: melanie.boerries@frias.uni-freiburg.de or hauke.busch@frias.uni-freiburg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Cell Movement , Hepatocyte Growth Factor/pharmacology , Keratinocytes/physiology , Models, Biological , Autocrine Communication , Cell Movement/drug effects , Cells, Cultured , Humans , Keratinocytes/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/drug effects , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL