Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Chemistry ; 16(31): 9340-8, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20607771

ABSTRACT

Large zeolite crystals have been used as model systems for the investigation of diffusion and catalytic reactivity phenomena in microporous host materials for at least two decades. However, their potential in assisting the detection of elusive reactive intermediates appears to have been underestimated. Herein, we show that a complementary use of vibrational and optical spectroscopy in combination with theoretical calculations allows for the unambiguous identification of transient carbocationic species generated upon the acid-catalyzed oligomerization of styrene derivatives within zeolite H-ZSM-5. Thanks to the mediated diffusion of the reactant in the large H-ZSM-5 crystals and minimal external surface the reaction intermediates can be accumulated within zeolite micropores in sufficient concentrations to allow their detection by synchrotron-based IR microspectroscopy. The UV/Vis and IR spectra display strong polarization dependence of on the molecular alignment of the dimeric styrene carbocations imposed by the zeolite channels and cages that can be rationalized in terms of the electronic and vibrational transitions of the intrazeolite carbocations. Based on these findings, a molecular-level picture of the macroscopic arrangement of the reaction intermediates confined within microporous zeolite matrices can be devised.

4.
Nat Mater ; 8(12): 959-65, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19767739

ABSTRACT

Zeolites play a crucial part in acid-base heterogeneous catalysis. Fundamental insight into their internal architecture is of great importance for understanding their structure-function relationships. Here, we report on a new approach correlating confocal fluorescence microscopy with focused ion beam-electron backscatter diffraction, transmission electron microscopy lamelling and diffraction, atomic force microscopy and X-ray photoelectron spectroscopy to study a wide range of coffin-shaped MFI-type zeolite crystals differing in their morphology and chemical composition. This powerful combination demonstrates a unified view on the morphology-dependent MFI-type intergrowth structures and provides evidence for the presence and nature of internal and outer-surface barriers for molecular diffusion. It has been found that internal-surface barriers originate not only from a 90 degrees mismatch in structure and pore alignment but also from small angle differences of 0.5 degrees-2 degrees for particular crystal morphologies. Furthermore, outer-surface barriers seem to be composed of a silicalite outer crust with a thickness varying from 10 to 200 nm.

5.
Chemistry ; 14(36): 11320-7, 2008.
Article in English | MEDLINE | ID: mdl-19021162

ABSTRACT

Formation of coke in large H-ZSM-5 and H-SAPO-34 crystals during the methanol-to-olefin (MTO) reaction has been studied in a space- and time-resolved manner. This has been made possible by applying a high-temperature in-situ cell in combination with micro-spectroscopic techniques. The buildup of optically active carbonaceous species allows detection with UV/Vis microscopy, while a confocal fluorescence microscope in an upright configuration visualises the formation of coke molecules and their precursors inside the catalyst grains. In H-ZSM-5, coke is initially formed at the triangular crystal edges, in which straight channel openings reach directly the external crystal surface. At reaction temperatures ranging from 530 to 745 K, two absorption bands at around 415 and 550 nm were detected due to coke or its precursors. Confocal fluorescence microscopy reveals fluorescent carbonaceous species that initially form in the near-surface area and gradually diffuse inwards the crystal in which internal intergrowth boundaries hinder a facile penetration for the more bulky aromatic compounds. In the case of H-SAPO-34 crystals, an absorption band at around 400 nm arises during the reaction. This band grows in intensity with time and then decreases if the reaction is carried out between 530 and 575 K, whereas at higher temperatures its intensity remains steady with time on stream. Formation of the fluorescent species during the course of the reaction is limited to the near-surface region of the H-SAPO-34 crystals, thereby creating diffusion limitations for the coke front moving towards the middle of the crystal during the MTO reaction. The two applied micro-spectroscopic techniques introduced allow us to distinguish between graphite-like coke deposited on the external crystal surface and aromatic species formed inside the zeolite channels. The use of the methods can be extended to a wide variety of catalytic reactions and materials in which carbonaceous deposits are formed.

8.
Chemistry ; 14(6): 1718-25, 2008.
Article in English | MEDLINE | ID: mdl-18213663

ABSTRACT

A combination of optical and fluorescence microscopy was used to study the morphology of micro- and mesoporous H-ZSM-5 zeolite crystals (17 x 4 x 4 microm) and to evaluate, in a spatially resolved manner, the effect of mesoporosity, introduced via desilication, on catalytic performance. For this purpose, the oligomerization of various styrene molecules was used as a model reaction, in which the carbocation intermediates formed in the zeolite pores act as reporter molecules. In situ confocal fluorescence measurements after the template removal process showed that the crystals generally consist of three different subunits that have pyramidal boundaries with each other. Examination of these crystals during styrene oligomerization revealed differences in the catalytic activity between the purely microporous and the combined micro- and mesoporous crystals. The introduction of intracrystalline mesoporosity limits the formation to dimeric carbocation intermediates and facilitates the transport of styrene molecules inside the zeolite volume. This leads to a more uniform coloration and fluorescence pattern of the crystals. Moreover, the oligomerization of various styrene compounds, which differ in their reactivity, provides a good way of estimating the Brønsted acid strength in a spatially resolved manner, showing a nonhomogeneously distributed Brønsted acidity over the volume of the crystals. More detailed information on the structure of the ZSM-5 crystals was revealed for mesoporous crystals during the oligomerization of 4-methoxystyrene. This reaction induced an "explosion" of the crystal leading to the formation of a complex system with at least eight different subunits. Finally, polarized-light microscopy was used to unravel the pore geometry in these individual building blocks. The observed differences in catalytic behavior between micro- and mesoporous ZSM-5 crystals are strengthened by the microspectroscopic techniques employed, which show that upon desilication the crystal morphology is affected, the product distribution is changed towards less conjugated carbocation intermediates, and that a gradient in Brønsted acid strength appears to be present.

10.
Chemistry ; 13(25): 7057-65, 2007.
Article in English | MEDLINE | ID: mdl-17639525

ABSTRACT

A combination of in-situ optical and fluorescence microspectroscopy has been employed to investigate the oligomerization of styrene derivatives occurring in the micropores of coffin-shaped H-ZSM-5 zeolite crystals in a space- and time-resolved manner. The carbocationic intermediates in this reaction act as reporter molecules for catalytic activity, since they exhibit strong optical absorption and fluorescence. In this way, reactant selectivity and restricted transition-state selectivity for 14 substituted styrene molecules can be visualized and quantified. Based on a thorough analysis of the time- and space-resolved UV/Vis spectra, it has been revealed that two main parameters affect the reaction rates, namely, the carbocation stabilization effect and the diffusion hindrance. The stabilization effect was tested by comparison of the reaction rates for 4-methoxystyrene versus 4-methylstyrene and in the series 4-bromo-, 4-chloro and 4-fluorostyrene; in both cases less electronegative substituents were found to accelerate the reaction. As to the steric effect, bulkier chemical groups bring down the reaction rate, as evident from the observation that 4-methoxystyrene is more reactive than 4-ethoxystyrene due to differences in their diffusivity, while heavily substituted styrenes, such as 3,4-dichlorostyrene and 2,3,4,5,6-pentafluorostyrene, cannot enter the zeolite pore system and therefore do not display any reactivity. Furthermore, beta-methoxystyrene and trans-beta-methylstyrene show limited reactivity as well as restricted reaction-product formation due to steric constraints imposed by the H-ZSM-5 channel system. Finally, polarized-light optical microspectroscopy and fluorescence microscopy demonstrate that dimeric styrene compounds are predominantly formed and aligned within the straight channels at the edges of the crystals, whereas a large fraction of trimeric carbocations along with dimeric compounds are present in the straight channels of the main body of the H-ZSM-5 crystals. Our results reinforce the observation of a non-uniform catalytic behavior within zeolite crystals, with specific parts of the zeolite grains being less accessible and reactive towards reactant molecules. The prospects and potential of this combined in-situ approach for studying large zeolite crystals in the act will be discussed.

12.
Phys Chem Chem Phys ; 8(20): 2413-20, 2006 May 28.
Article in English | MEDLINE | ID: mdl-16710489

ABSTRACT

In continuation of our previous work on the applicability of the G(R(infinity)) correction factor for the quantification of Raman spectra of coke during propane dehydrogenation experiments (Phys. Chem. Chem. Phys., 2005, 7, 211), research has been carried out on the potential of this correction factor for the quantification of supported metal oxides during reduction experiments. For this purpose, supported chromium oxide catalysts have been studied by combined in situ Raman and UV-Vis spectroscopy during temperature programmed reduction experiments with hydrogen as reducing agent. The goal was to quantify on-line the amount of Cr(6+) in a reactor based on the measured in situ Raman spectra. During these experiments, a significant temperature effect was observed, which has been investigated in more detail with a thermal imaging technique. The results revealed a temperature 'on the spot' that can exceed 100 degrees C. It implies that Raman spectroscopy can have a considerable effect on the local reaction conditions and explains observed inconsistencies between the in situ UV-Vis and Raman data. In order to minimize this heating effect, reduction of the laser power, mathematical matching of the spectroscopic data, a different cell design and a change in reaction conditions has been evaluated. It is demonstrated that increasing the reactor temperature is the most feasible method to solve the heating problem. Next, it allows the application of in situ Raman spectroscopy in a reliable quantitative way without the need of an internal standard.


Subject(s)
Aluminum Oxide/chemistry , Artifacts , Chromium/chemistry , Coke/analysis , Hot Temperature , Models, Chemical , Spectrum Analysis, Raman/methods , Algorithms , Aluminum Oxide/analysis , Bioreactors , Catalysis , Chromium/analysis , Computer Simulation , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...