Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Hered ; 115(1): 130-138, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-37793045

ABSTRACT

The little pocket mouse, Perognathus longimembris, and its nine congeners are small heteromyid rodents found in arid and seasonally arid regions of Western North America. The genus is characterized by behavioral and physiological adaptations to dry and often harsh environments, including nocturnality, seasonal torpor, food caching, enhanced osmoregulation, and a well-developed sense of hearing. Here we present a genome assembly of Perognathus longimembris longimembris generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing as part of the California Conservation Genomics Project. The assembly has a length of 2.35 Gb, contig N50 of 11.6 Mb, scaffold N50 of 73.2 Mb, and includes 93.8% of the BUSCO Glires genes. Interspersed repetitive elements constitute 41.2% of the genome. A comparison with the highly endangered Pacific pocket mouse, P. l. pacificus, reveals broad synteny. These new resources will enable studies of local adaptation, genetic diversity, and conservation of threatened taxa.


Subject(s)
Chromosomes , Genome , Animals , Mice , Genomics , North America
2.
Nat Commun ; 13(1): 4676, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945236

ABSTRACT

Repeated evolution can provide insight into the mechanisms that facilitate adaptation to novel or changing environments. Here we study adaptation to altitude in two tropical butterflies, Heliconius erato and H. melpomene, which have repeatedly and independently adapted to montane habitats on either side of the Andes. We sequenced 518 whole genomes from altitudinal transects and found many regions differentiated between highland (~ 1200 m) and lowland (~ 200 m) populations. We show repeated genetic differentiation across replicate populations within species, including allopatric comparisons. In contrast, there is little molecular parallelism between the two species. By sampling five close relatives, we find that a large proportion of divergent regions identified within species have arisen from standing variation and putative adaptive introgression from high-altitude specialist species. Taken together our study supports a role for both standing genetic variation and gene flow from independently adapted species in promoting parallel local adaptation to the environment.


Subject(s)
Butterflies , Adaptation, Physiological/genetics , Altitude , Animals , Butterflies/genetics , Phenotype , Phylogeny
3.
Genome Biol Evol ; 13(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-33944917

ABSTRACT

How frequent is gene flow between species? The pattern of evolution is typically portrayed as a phylogenetic tree, yet gene flow between good species may be an important mechanism in diversification, spreading adaptive traits and leading to a complex pattern of phylogenetic incongruence. This process has thus far been studied mainly among a few closely related species, or in geographically restricted areas such as islands, but not on the scale of a continental radiation. Using a genomic representation of 40 out of 47 species in the genus, we demonstrate that admixture has played a role throughout the evolution of the charismatic Neotropical butterflies Heliconius. Modeling of phylogenetic networks based on the exome uncovers up to 13 instances of interspecific gene flow. Admixture is detected among the relatives of Heliconius erato, as well as between the ancient lineages leading to modern clades. Interspecific gene flow played a role throughout the evolution of the genus, although the process has been most frequent in the clade of Heliconius melpomene and relatives. We identify Heliconius hecalesia and relatives as putative hybrids, including new evidence for introgression at the loci controlling the mimetic wing patterns. Models accounting for interspecific gene flow yield a more complete picture of the radiation as a network, which will improve our ability to study trait evolution in a realistic comparative framework.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Gene Flow , Genome , Phylogeny , Wings, Animal
4.
Proc Biol Sci ; 287(1937): 20201071, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33081613

ABSTRACT

Studies of altitudinal and latitudinal gradients have identified links between the evolution of insect flight morphology, landscape structure and microclimate. Although lowland tropical rainforests offer steeper shifts in conditions between the canopy and the understorey, this vertical gradient has received far less attention. Butterflies, because of their great phenotypic plasticity, are excellent models to study selection pressures that mould flight morphology. We examined data collected over 5 years on 64 Nymphalidae butterflies in the Ecuadorian Chocó rainforest. We used phylogenetic methods to control for similarity resulting from common ancestry, and explore the relationships between species stratification and flight morphology. We hypothesized that species should show morphological adaptations related to differing micro-environments, associated with canopy and understorey. We found that butterfly species living in each stratum presented significantly different allometric slopes. Furthermore, a preference for the canopy was significantly associated with low wing area to thoracic volume ratios and high wing aspect ratios, but not with the relative distance to the wing centroid, consistent with extended use of fast flapping flight for canopy butterflies and slow gliding for the understorey. Our results suggest that microclimate differences in vertical gradients are a key factor in generating morphological diversity in flying insects.


Subject(s)
Butterflies/physiology , Flight, Animal , Rainforest , Adaptation, Physiological , Animals , Biological Evolution , Wings, Animal
5.
Ecol Evol ; 10(9): 3895-3918, 2020 May.
Article in English | MEDLINE | ID: mdl-32489619

ABSTRACT

In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter- and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified "indicator" compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.

6.
Ecol Evol ; 10(5): 2677-2694, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32185010

ABSTRACT

Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide-releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well-studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.

7.
Evolution ; 71(2): 261-273, 2017 02.
Article in English | MEDLINE | ID: mdl-27958661

ABSTRACT

Understanding both the role of selection in driving phenotypic change and its underlying genetic basis remain major challenges in evolutionary biology. Here, we use modern tools to revisit a classic system of local adaptation in the North American deer mouse, Peromyscus maniculatus, which occupies two main habitat types: prairie and forest. Using historical collections, we find that forest-dwelling mice have longer tails than those from nonforested habitat, even when we account for individual and population relatedness. Using genome-wide SNP data, we show that mice from forested habitats in the eastern and western parts of their range form separate clades, suggesting that increased tail length evolved independently. We find that forest mice in the east and west have both more and longer caudal vertebrae, but not trunk vertebrae, than nearby prairie forms. By intercrossing prairie and forest mice, we show that the number and length of caudal vertebrae are not correlated in this recombinant population, indicating that variation in these traits is controlled by separate genetic loci. Together, these results demonstrate convergent evolution of the long-tailed forest phenotype through two distinct genetic mechanisms, affecting number and length of vertebrae, and suggest that these morphological changes-either independently or together-are adaptive.


Subject(s)
Biological Evolution , Peromyscus/anatomy & histology , Peromyscus/genetics , Phenotype , Tail/anatomy & histology , Animals , DNA, Mitochondrial/genetics , Forests , Grassland , North America , Phylogeography , Sequence Analysis, DNA
8.
BMC Evol Biol ; 15: 125, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26123545

ABSTRACT

BACKGROUND: Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. RESULTS: Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. CONCLUSIONS: Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two groups. To establish whether heliconiines are exceptional will require biogeographic comparative studies for a wider range of animal taxa including many more invertebrates.


Subject(s)
Butterflies/classification , Butterflies/genetics , Animals , Biodiversity , Butterflies/anatomy & histology , Climate , Computer Simulation , Databases, Factual , Ecology , Genetic Speciation , Phylogeny , Sympatry , Wings, Animal/anatomy & histology
9.
Syst Biol ; 64(3): 505-24, 2015 May.
Article in English | MEDLINE | ID: mdl-25634098

ABSTRACT

Müllerian mimicry among Neotropical Heliconiini butterflies is an excellent example of natural selection, associated with the diversification of a large continental-scale radiation. Some of the processes driving the evolution of mimicry rings are likely to generate incongruent phylogenetic signals across the assemblage, and thus pose a challenge for systematics. We use a data set of 22 mitochondrial and nuclear markers from 92% of species in the tribe, obtained by Sanger sequencing and de novo assembly of short read data, to re-examine the phylogeny of Heliconiini with both supermatrix and multispecies coalescent approaches, characterize the patterns of conflicting signal, and compare the performance of various methodological approaches to reflect the heterogeneity across the data. Despite the large extent of reticulate signal and strong conflict between markers, nearly identical topologies are consistently recovered by most of the analyses, although the supermatrix approach failed to reflect the underlying variation in the history of individual loci. However, the supermatrix represents a useful approximation where multiple rare species represented by short sequences can be incorporated easily. The first comprehensive, time-calibrated phylogeny of this group is used to test the hypotheses of a diversification rate increase driven by the dramatic environmental changes in the Neotropics over the past 23 myr, or changes caused by diversity-dependent effects on the rate of diversification. We find that the rate of diversification has increased on the branch leading to the presently most species-rich genus Heliconius, but the change occurred gradually and cannot be unequivocally attributed to a specific environmental driver. Our study provides comprehensive comparison of philosophically distinct species tree reconstruction methods and provides insights into the diversification of an important insect radiation in the most biodiverse region of the planet.


Subject(s)
Butterflies/classification , Butterflies/genetics , Genetic Speciation , Phylogeny , Animals , Genetic Markers/genetics , Time
10.
PLoS Genet ; 9(7): e1003620, 2013.
Article in English | MEDLINE | ID: mdl-23950722

ABSTRACT

Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes.


Subject(s)
Butterflies/genetics , DNA Copy Number Variations/genetics , Feeding Behavior , Gene Duplication , Taste Perception/genetics , Animals , Butterflies/physiology , Drosophila Proteins/genetics , Evolution, Molecular , Female , Genome, Insect , Male , Oviposition/genetics , Phylogeny , Receptors, Cell Surface/genetics
11.
Mol Ecol ; 22(3): 814-26, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22924870

ABSTRACT

The Heliconius butterflies are a diverse recent radiation comprising multiple levels of divergence with ongoing gene flow between species. The recently sequenced genome of Heliconius melpomene allowed us to investigate the genomic evolution of this group using dense RAD marker sequencing. Phylogenetic analysis of 54 individuals robustly supported reciprocal monophyly of H. melpomene and Heliconius cydno and refuted previous phylogenetic hypotheses that H. melpomene may be paraphylectic with respect to H. cydno. Heliconius timareta also formed a monophyletic clade closely related but distinct from H. cydno with Heliconius heurippa falling within this clade. We find evidence for genetic admixture between sympatric populations of the sister clades H. melpomene and H. cydno/timareta, particularly between H. cydno and H. melpomene from Central America and between H. timareta and H. melpomene from the eastern slopes of the Andes. Between races, divergence is primarily explained by isolation by distance and there is no detectable genetic population structure between parapatric races, suggesting that hybrid zones between races are not zones of secondary contact. Our results also support previous findings that colour pattern loci are shared between populations and species with similar colour pattern elements. Furthermore, this pattern is almost unique to these genomic regions, with only a very small number of other loci showing significant similarity between populations and species with similar colour patterns.


Subject(s)
Butterflies/genetics , Gene Flow , Genetic Speciation , Phylogeny , Animals , Butterflies/classification , Genes, Insect , Genetic Loci , Genetics, Population , Genotyping Techniques , Geography , Likelihood Functions , Pigmentation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , South America , Sympatry
SELECTION OF CITATIONS
SEARCH DETAIL
...