Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Am Soc Mass Spectrom ; 35(3): 518-526, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38308645

ABSTRACT

Aryl hydrocarbon receptor (AhR) is a transcription factor that regulates gene expression upon ligand activation, enabling microbiota-dependent induction, training, and function of the host immune system. A spectrum of metabolites, encompassing indole and tryptophan derivatives, have been recognized as activators. This work introduces an integrated, mass spectrometry-centric workflow that employs a bioassay-guided, fractionation-based methodology for the identification of AhR activators derived from human bacterial isolates. By leveraging the workflow efficiency, the complexities inherent in metabolomics profiling are significantly reduced, paving the way for an in-depth and focused mass spectrometry analysis of bioactive fractions isolated from bacterial culture supernatants. Validation of AhR activator candidates used multiple criteria─MS/MS of the synthetic reference compound, bioassay of AhR activity, and elution time confirmation using a C-13 isotopic reference─and was demonstrated for N-formylkynurenine (NFK). The workflow reported provides a roadmap update for improved efficiency of identifying bioactive metabolites using mass spectrometry-based metabolomics. Mass spectrometry datasets are accessible at the National Metabolomics Data Repository (PR001479, Project DOI: 10.21228/M8JM7Q).


Subject(s)
Receptors, Aryl Hydrocarbon , Tandem Mass Spectrometry , Humans , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
2.
Front Mol Biosci ; 10: 1110445, 2023.
Article in English | MEDLINE | ID: mdl-36923642

ABSTRACT

The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long non-coding RNAs (lncRNAs) are transcripts of >200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT-transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ∼10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co-expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest a potential role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology.

3.
medRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168423

ABSTRACT

Objective: Chronic rhinosinusitis (CRS) impacts an estimated 5% to 15% of people worldwide, incurring significant economic healthcare burden. There is a urgent need for the discovery of predictive biomarkers to improve treatment strategies and outcomes for CRS patients. Study design: Cohort study of CRS patients and healthy controls using blood samples. Setting: Out-patient clinics. Methods: Whole blood samples were collected for flow cytometric analysis. Mechanistic studies involved the transfection of human primary T cells and Jurkat cells. Results: Our analysis began with a 63-69 year-old female patient diagnosed with refractory CRS,. Despite undergoing multiple surgeries, she continually faced sinus infections. Whole exome sequencing pinpointed a heterozygous IL-12Rb1 mutation situated in the linker region adjacent to the cytokine binding domain. When subjected to IL-12 stimulation, the patient's CD4 T-cells exhibited diminished STAT4 phosphorylation. However, computer modeling or T-cell lines harboring the same IL-12 receptor mutation did not corroborate the hypothesis that IL-12Rb could be responsible for the reduced phosphorylation of STAT4 by IL-12 stimulation. Upon expanding our investigation to a broader CRS patient group using the pSTAT4 assay, we discerned a subset of refractory CRS patients with abnormally low STAT4 phosphorylation. The deficiency showed improvement both in-vitro and in-vivo after exposure to Latilactobacillus sakei (aka Lactobacillus sakei), an effect at least partially dependent on IL-12. Conclusion: In refractory CRS patients, an identified STAT4 defect correlates with poor clinical outcomes after sinus surgery, which can be therapeutically targeted by Latilactobacillus sakei treatment. Prospective double-blind placebo-controlled trials are needed to validate our findings.

4.
Clin Transl Immunology ; 11(10): e1421, 2022.
Article in English | MEDLINE | ID: mdl-36285327

ABSTRACT

Objectives: Despite advances in antibody treatments and vaccines, COVID-19 caused by SARS-CoV-2 infection remains a major health problem resulting in excessive morbidity and mortality and the emergence of new variants has reduced the effectiveness of current vaccines. Methods: Here, as a proof-of-concept, we engineered primary CD8 T cells to express SARS-CoV-2 Spike protein-specific CARs, using the extracellular region of ACE2 and demonstrated their highly specific and potent cytotoxicity towards Spike-expressing target cells. To improve on this concept as a potential therapeutic, we developed a bispecific T cell engager combining ACE2 with an anti-CD3 scFv (ACE2-Bite) to target infected cells and the virus. Results: As in CAR-T cell approach, ACE2-Bite endowed cytotoxic cells to selectively kill Spike-expressing targets. Furthermore, ACE2-Bite neutralized the pseudoviruses of SARS-CoV, SARS-CoV-2 wild-type, and variants including Delta and Omicron, as a decoy protein. Remarkably, ACE2-Bite molecule showed a higher binding and neutralization affinity to Delta and Omicron variants compared to SARS-CoV-2 wild-type Spike proteins. Conclusion: In conclusion, these results suggest the potential of this approach as a variant-proof, therapeutic strategy for future SARS-CoV-2 variants, employing both humoral and cellular arms of the adaptive immune response.

5.
J Immunol ; 209(8): 1523-1531, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36165183

ABSTRACT

Engineering immune cells with chimeric Ag receptors (CARs) is a promising technology in cancer immunotherapy. Besides classical cytotoxic CD8+ T cells, innate cell types such as NK cells have also been used to generate CAR-T or CAR-NK cells. In this study, we devised an approach to program a nonclassical cytotoxic T cell subset called mucosal-associated invariant T (MAIT) cells into effective CAR-T cells against B cell lymphoma and breast cancer cells. Accordingly, we expressed anti-CD19 and anti-Her2 CARs in activated primary human MAIT cells and CD8+ T cells, expanded them in vitro, and compared their cytotoxicity against tumor cell targets. We show upon activation through CARs that CAR-MAIT cells exhibit high levels of cytotoxicity toward target cells, comparable to CD8+ CAR-T cells, but interestingly expressed lower levels of IFN-γ than conventional CAR CD8+ T cells. Additionally, in the presence of vitamin B2 metabolite 5-ARU (5-amino-4-d-ribitylaminouracil dihydrochloride), which is a conserved compound that activates MAIT cells through MHC class I-related (MR1) protein, MAIT cells killed MR1-expressing target breast cancer and B cell lymphoma cell lines in a dose-dependent manner. Thus, MAIT cells can be genetically edited as CAR-T cells or mobilized and expanded by MR1 ligands as an off-the-shelf novel approach to cell-based cancer immunotherapy strategies while being comparable to conventional methods in effectivity.


Subject(s)
Breast Neoplasms , Lymphoma, B-Cell , Mucosal-Associated Invariant T Cells , Receptors, Chimeric Antigen , Antigens/metabolism , Breast Neoplasms/therapy , CD8-Positive T-Lymphocytes , Female , Histocompatibility Antigens Class I , Humans , Immunotherapy , Minor Histocompatibility Antigens/genetics , Receptors, Antigen, T-Cell , Vitamins
6.
Biofabrication ; 14(4)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36108605

ABSTRACT

Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune-cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8+T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells. Homotypic MDA-MB-231 and heterotypic MDA-MB-231/human dermal fibroblast tumor spheroids were primed with precursor MAIT cell ligand 5-amino-6-D-ribitylaminouracil (5-ARU). Engineered T cells effectively eliminated tumors after a 3 d culture period, demonstrating that the engineered T cell receptor recognized major histocompatibility complex class I-related (MR1) protein expressing tumor cells in the presence of 5-ARU. Tumor cell killing efficiency of engineered T cells were also assessed by encapsulating these cells in fibrin, mimicking a tumor extracellular matrix microenvironment. Expression of proinflammatory cytokines such as interferon gamma, interleukin-13, CCL-3 indicated immune cell activation in all tumor models, post immunotherapy. Further, in corroborating the cytotoxic activity, we found that granzymes A and B were also upregulated, in homotypic as well as heterotypic tumors. Finally, a 3D bioprinted tumor model was employed to study the effect of localization of T cells with respect to tumors. T cells bioprinted proximal to the tumor had reduced invasion index and increased cytokine secretion, which indicated a paracrine mode of immune-cancer interaction. Development of 3D tumor-T cell platforms may enable studying the complex immune-cancer interactions and engineering MAIT cells for cell-based cancer immunotherapies.


Subject(s)
Breast Neoplasms , Mucosal-Associated Invariant T Cells , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cytokines/metabolism , Female , Fibrin/metabolism , Granzymes/metabolism , Humans , Interferon-gamma/metabolism , Interleukin-13/metabolism , Ligands , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Tumor Microenvironment
7.
Cell Syst ; 13(8): 598-614.e6, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35690068

ABSTRACT

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.


Subject(s)
COVID-19 , Adult , CD56 Antigen/analysis , CD56 Antigen/metabolism , COVID-19/genetics , Cytokines/metabolism , Genetic Predisposition to Disease , Humans , Killer Cells, Natural/chemistry , Killer Cells, Natural/metabolism , Polymorphism, Single Nucleotide
8.
Inflamm Bowel Dis ; 28(7): 1019-1026, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34528661

ABSTRACT

BACKGROUND: Characterization of neutralization antibodies to SARS-CoV-2 infection or vaccination in children and young adults with inflammatory bowel disease (IBD) receiving biologic therapies is crucial. METHODS: We performed a prospective longitudinal cohort study evaluating SARS-CoV-2 spike protein receptor binding domain (S-RBD) IgG positivity along with consistent clinical symptoms in patients with IBD receiving infliximab or vedolizumab. Serum was also obtained following immunization with approved vaccines. The IgG antibody to the spike protein binding domain of SARS-CoV-2 was assayed with a fluorescent bead-based immunoassay that takes advantage of the high dynamic range of fluorescent molecules using flow cytometry. A sensitive and high-throughput neutralization assay that incorporates SARS-CoV-2 spike protein onto a lentivirus and measures pseudoviral entry into ACE2-angiotensin converting enzyme 2 (ACE2) expressing human embryonic kidney 293 (HEK-293) cells was used. RESULTS: There were 436 patients enrolled (mean age, 17 years, range 2-26 years; 58% male; 71% Crohn's disease, 29% ulcerative colitis, IBD-unspecified). Forty-four (10%) of enrolled subjects had SARS-CoV-2 S-RBD IgG antibodies. Compared to non-IBD adults (ambulatory) and hospitalized pediatric patients with PCR documented SARS-CoV-2 infection, S-RBD IgG antibody levels were significantly lower in the IBD cohort and by 6 months post infection most patients lacked neutralizing antibody. Following vaccination (n = 33), patients had a 15-fold higher S-RBD antibody response in comparison with natural infection, and all developed neutralizing antibodies to both wild type and variant SARS-CoV-2. CONCLUSIONS: The lower and less durable SARS-CoV-2 S-RBD IgG response to natural infection in IBD patients receiving biologics puts them at risk of reinfection. The robust response to immunization is likely protective.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Inflammatory Bowel Diseases , Adolescent , Adult , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Female , HEK293 Cells , Humans , Immunoglobulin G , Inflammatory Bowel Diseases/drug therapy , Longitudinal Studies , Male , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Young Adult
9.
medRxiv ; 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34159338

ABSTRACT

BACKGROUND: Characterization of neutralization antibodies to SARS-CoV-2 infection or vaccination in children and young adults with inflammatory bowel disease (IBD) receiving biologic therapies is crucial. METHODS: W e performed a prospective longitudinal cohort study evaluating SARS-CoV-2 Spike protein receptor binding domain (S-RBD) IgG positivity along with consistent clinical symptoms in patients with IBD receiving infliximab or vedolizumab. Serum was also obtained following immunization with approved vaccines. IgG antibody to the spike protein binding domain of SARS-CoV-2 was assayed with a fluorescent bead-based immunoassay that takes advantage of the high dynamic range of fluorescent molecules using flow cytometry. A sensitive and high-throughput neutralization assay that incorporates SARS-CoV-2 Spike protein onto a lentivirus and measures pseudoviral entry into ACE2 expressing HEK-293 cells was used. RESULTS: 436 patients were enrolled (mean age 17 years, range 2-26 years, 58% male, 71% Crohn’s disease, 29% ulcerative colitis, IBD-unspecified). 44 (10%) of enrolled subjects had SARS-CoV-2 S-RBD IgG antibodies. Compared to non-IBD adults (ambulatory) and hospitalized pediatric patients with PCR documented SARS-CoV-2 infection, S-RBD IgG antibody levels were significantly lower in the IBD cohort and by 6 months post infection most patients lacked neutralizing antibody. Following vaccination (n=33) patients had a 15-fold higher S-RBD antibody response in comparison to natural infection, and all developed neutralizing antibodies to both wild type and variant SARS-CoV-2. CONCLUSIONS AND RELEVANCE: The lower and less durable SARS-CoV-2 S-RBD IgG response to natural infection in IBD patients receiving biologics puts them at risk of reinfection. The robust response to immunization is likely protective. SUMMARY: Our study showed a low and poorly durable SARS-CoV-2 S-RBD neutralizing IgG response to natural infection in IBD patients receiving biologics potentially putting them at risk of reinfection. However, they also had a robust response to immunization that is likely protective.

10.
Commun Biol ; 4(1): 129, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514825

ABSTRACT

Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Adult , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Female , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Immune Sera/chemistry , Immunity, Humoral , Lentivirus/genetics , Lentivirus/immunology , Male , Middle Aged , Neutralization Tests , Phosphoproteins/chemistry , Phosphoproteins/immunology , Phosphoproteins/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
11.
Mol Cell Biochem ; 475(1-2): 215-226, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32767230

ABSTRACT

Ionizing radiation induces apoptosis in human Molt-4 leukemia cells in a p53-dependent manner. The tumor suppressor p53 stimulates various downstream targets that presumably trigger, individually or in concert, de novo ceramide synthesis and intrinsic apoptosis via mitochondrial outer membrane permeabilization (MOMP). Among these targets, BH3-only protein Noxa was found to be promptly activated by p53 prior to ceramide accumulation and apoptosis in response to irradiation. To evaluate the relation between Noxa and ceramide in irradiation-induced apoptosis, Noxa was silenced in Molt-4 cells and apoptosis, p53 expression, and ceramide accumulation were assessed in response to irradiation. In the absence of Noxa, irradiation of Molt-4 cells still induced apoptosis in a p53-dependent manner however ceramide levels decreased significantly although they remained higher than untreated control. Upon irradiation, Noxa was found to translocate to the mitochondria where endogenous ceramide accumulation was observed. In contrast, overexpression of Bcl-2, another mitochondrial protein, in Molt-4 cells abolished the endogenous ceramide accumulation and apoptosis. In irradiation-induced, p53-dependent pathways of apoptosis, the pro-apoptotic Noxa represents one of several, yet to be identified, pathways simultaneously triggered by p53 to produce mitochondrial ceramide accumulation and apoptosis. In contrast, Bcl-2 functions as a broader inhibitor of both ceramide accumulation and apoptosis. Altogether, these results indicate that members of the Bcl-2 family differentially regulate ceramide accumulation and reveal the existence of crosstalk between Bcl-2 family members and ceramide in mediating p53-dependent apoptosis in Molt-4 human T-cell leukemia.


Subject(s)
Ceramides/metabolism , Leukemia, T-Cell/pathology , Mitochondria/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis/physiology , Cell Line, Tumor , Humans , Leukemia, T-Cell/genetics , Leukemia, T-Cell/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics
12.
EMBO Mol Med ; 12(8): e11592, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32609955

ABSTRACT

Immunity to fungal infections is mediated by cells of the innate and adaptive immune system including Th17 cells. Ca2+ influx in immune cells is regulated by stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. We here identify patients with a novel mutation in STIM1 (p.L374P) that abolished Ca2+ influx and resulted in increased susceptibility to fungal and other infections. In mice, deletion of STIM1 in all immune cells enhanced susceptibility to mucosal C. albicans infection, whereas T cell-specific deletion of STIM1 impaired immunity to systemic C. albicans infection. STIM1 deletion impaired the production of Th17 cytokines essential for antifungal immunity and compromised the expression of genes in several metabolic pathways including Foxo and HIF1α signaling that regulate glycolysis and oxidative phosphorylation (OXPHOS). Our study further revealed distinct roles of STIM1 in regulating transcription and metabolic programs in non-pathogenic Th17 cells compared to pathogenic, proinflammatory Th17 cells, a finding that may potentially be exploited for the treatment of Th17 cell-mediated inflammatory diseases.


Subject(s)
Calcium , Th17 Cells , Animals , Antifungal Agents , Calcium/metabolism , Calcium Channels/genetics , Humans , Mice , Neoplasm Proteins , ORAI1 Protein , Stromal Interaction Molecule 1/genetics , Th17 Cells/metabolism
13.
medRxiv ; 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32676617

ABSTRACT

Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n=115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.

14.
Nature ; 583(7816): 447-452, 2020 07.
Article in English | MEDLINE | ID: mdl-32499651

ABSTRACT

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Colitis/genetics , Colitis/immunology , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , T-Lymphocytes, Regulatory/immunology , Acetylation , Alleles , Animals , Chromosomes, Mammalian/genetics , Female , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Synteny/genetics
15.
J Biol Chem ; 295(18): 5944-5959, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32179646

ABSTRACT

The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton-Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Small Molecule Libraries/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Molecular Docking Simulation , Protein Domains , Protein Multimerization , Protein Structure, Quaternary , Small Molecule Libraries/metabolism , Virulence/drug effects
16.
Immunity ; 49(5): 873-885.e7, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30366765

ABSTRACT

Receptor interacting protein 2 (RIP2) plays a role in sensing intracellular pathogens, but its function in T cells is unclear. We show that RIP2 deficiency in CD4+ T cells resulted in chronic and severe interleukin-17A-mediated inflammation during Chlamydia pneumoniae lung infection, increased T helper 17 (Th17) cell formation in lungs of infected mice, accelerated atherosclerosis, and more severe experimental autoimmune encephalomyelitis. While RIP2 deficiency resulted in reduced conventional Th17 cell differentiation, it led to significantly enhanced differentiation of pathogenic (p)Th17 cells, which was dependent on RORα transcription factor and interleukin-1 but independent of nucleotide oligomerization domain (NOD) 1 and 2. Overexpression of RIP2 resulted in suppression of pTh17 cell differentiation, an effect mediated by its CARD domain, and phenocopied by a cell-permeable RIP2 CARD peptide. Our data suggest that RIP2 has a T cell-intrinsic role in determining the balance between homeostatic and pathogenic Th17 cell responses.


Subject(s)
Cell Differentiation/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Th17 Cells/cytology , Th17 Cells/metabolism , Animals , Atherosclerosis , Biomarkers , Caspase Activation and Recruitment Domain , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/mortality , Gene Expression , Immunophenotyping , Inflammation/genetics , Inflammation/metabolism , Interleukin-17/biosynthesis , Interleukin-1beta , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
17.
Mucosal Immunol ; 11(6): 1591-1605, 2018 11.
Article in English | MEDLINE | ID: mdl-30115998

ABSTRACT

Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.


Subject(s)
Bacteroidetes/immunology , Macrophages/immunology , Microbiota/immunology , Mucosal-Associated Invariant T Cells/immunology , Proteobacteria/immunology , Riboflavin/metabolism , Antigen Presentation , Antigens, Bacterial/immunology , Cells, Cultured , Genetic Engineering , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Macrophages/microbiology , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/microbiology , Receptors, Antigen, T-Cell/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
18.
JCO Precis Oncol ; 20182018.
Article in English | MEDLINE | ID: mdl-30079384

ABSTRACT

PURPOSE: The promise of precision oncology is that identification of genomic alterations will direct the rational use of molecularly targeted therapy. This approach is particularly applicable to neoplasms that are resistant to standard cytotoxic chemotherapy, like T-cell leukemias and lymphomas. In this study, we tested the feasibility of targeted next-generation sequencing in profiles of diverse T-cell neoplasms and focused on the therapeutic utility of targeting activated JAK1 and JAK3 in an index case. PATIENTS AND METHODS: Using Foundation One and Foundation One Heme assays, we performed genomic profiling on 91 consecutive T-cell neoplasms for alterations in 405 genes. The samples were sequenced to high uniform coverage with an Illumina HiSeq and averaged a coverage depth of greater than 500× for DNA and more than 8M total pairs for RNA. An index case of T-cell prolymphocytic leukemia (T-PLL), which was analyzed by targeted next-generation sequencing, is presented. T-PLL cells were analyzed by RNA-seq, in vitro drug testing, mass cytometry, and phospho-flow. RESULTS: One third of the samples had genomic aberrations in the JAK-STAT pathway, most often composed of JAK1 and JAK3 gain-of-function mutations. We present an index case of a patient with T-PLL with a clonal JAK1 V658F mutation that responded to ruxolitinib therapy. After relapse developed, an expanded clone that harbored mutant JAK3 M511I and downregulation of the phosphatase, CD45, was identified. We demonstrate that the JAK missense mutations were activating, caused pathway hyperactivation, and conferred cytokine hypersensitivity. CONCLUSION: These results underscore the utility of profiling occurrences of resistance to standard regimens and support JAK enzymes as rational therapeutic targets for T-cell leukemias and lymphomas.

19.
J Immunol ; 201(5): 1586-1598, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30021769

ABSTRACT

Developing precise and efficient gene editing approaches using CRISPR in primary human T cell subsets would provide an effective tool in decoding their functions. Toward this goal, we used lentiviral CRISPR/Cas9 systems to transduce primary human T cells to stably express the Cas9 gene and guide RNAs that targeted either coding or noncoding regions of genes of interest. We showed that multiple genes (CD4, CD45, CD95) could be simultaneously and stably deleted in naive, memory, effector, or regulatory T cell (Treg) subsets at very high efficiency. Additionally, nuclease-deficient Cas9, associated with a transcriptional activator or repressor, can downregulate or increase expression of genes in T cells. For example, expression of glycoprotein A repetitions predominant (GARP), a gene that is normally and exclusively expressed on activated Tregs, could be induced on non-Treg effector T cells by nuclease-deficient Cas9 fused to transcriptional activators. Further analysis determined that this approach could be used in mapping promoter sequences involved in gene transcription. Through this CRISPR/Cas9-mediated genetic editing we also demonstrated the feasibility of human T cell functional analysis in several examples: 1) CD95 deletion inhibited T cell apoptosis upon reactivation; 2) deletion of ORAI1, a Ca2+ release-activated channel, abolished Ca2+ influx and cytokine secretion, mimicking natural genetic mutations in immune-deficient patients; and 3) transcriptional activation of CD25 or CD127 expression enhanced cytokine signaling by IL-2 or IL-7, respectively. Taken together, application of the CRISPR toolbox to human T cell subsets has important implications for decoding the mechanisms of their functional outputs.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , T-Lymphocytes, Regulatory/immunology , Female , Humans , Male
20.
Breast Cancer Res Treat ; 168(1): 57-67, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29124456

ABSTRACT

BACKGROUND AND PURPOSE: Resistance to endocrine therapies in hormone receptor (HR)-positive breast cancer is a significant challenge. Prior studies have shown that low-dose oral cyclophosphamide can transiently deplete regulatory T cells (Tregs) and improve anti-tumor immunity. We investigated the combination of exemestane with cyclophosphamide in patients with advanced HR-positive breast cancer and assessed changes in circulating immune cell subsets. METHODS: This was a single-arm phase II trial of exemestane with cyclophosphamide in patients with metastatic HR-positive/HER2-negative breast cancer who had progressed on prior endocrine therapy (ClinicalTrials.gov: NCT01963481). Primary endpoint was progression-free survival (PFS) at 3 months (RECIST 1.1). Secondary objectives included median PFS, objective response rate, duration of response, and safety. Circulating Tregs (FOXP3+Helios+) and other immune cell subsets were monitored during treatment and compared with healthy controls. RESULTS: Twenty-three patients were enrolled. Treatment was well tolerated, without grade 4/5 toxicities. Objective responses were seen in 6/23 patients (26.1%; 95% CI 10.2-48.4%) and were durable (median 11.6 months). Three-month PFS rate was 50.1% (95% CI 33.0-76.0%); median PFS was 4.23 months (95% CI 2.8-11.7). No treatment-related decrease in Tregs was observed. However, elevated baseline levels of Naïve Tregs [greater than 2.5 (the median of the naïve Tregs)] were associated with relative risk of disease progression or death [hazard ratio 11.46 (95% CI 2.32-56.5)]. In addition, the baseline levels of Naïve Tregs (adj-p = 0.04), Memory Tregs (adj-p = 0.003), CD4 + Central Memory T cells (adj-p = 0.0004), PD-1 + CD4 + Central Memory T cells (adj-p = 0.008), and PD-1 + CD4 + Effector Memory T cells (adj-p = 0.009) were significantly greater in the patients than in the healthy controls; the baseline levels of  %CD4 + Naïve T cells (adj-p = 0.0004) were significantly lower in patients compared with healthy controls (n = 40). CONCLUSION: Treg depletion was not observed with low-dose cyclophosphamide when assessed by the specific marker FOXP3 + Helios +; however, baseline naïve Tregs were associated with 3-month PFS. Exemestane/cyclophosphamide combination had favorable safety profile with evidence of clinical activity in heavily pretreated patients.


Subject(s)
Androstadienes/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cyclophosphamide/pharmacology , T-Lymphocytes, Regulatory/drug effects , Administration, Oral , Adult , Aged , Androstadienes/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/immunology , Breast/pathology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cyclophosphamide/therapeutic use , Disease Progression , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/immunology , Female , Humans , Middle Aged , Postmenopause , Progression-Free Survival , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...