Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Behav ; 284: 114637, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38997097

ABSTRACT

Boredom, a complex emotional state with implications for mental health and well-being, has garnered attention across disciplines, yet remains relatively understudied in psychiatric research. Here, we explored the intricate relationship between trait-impulsivity, stress, and boredom across two studies. Participants completed self-report measures of trait-impulsivity and boredom and boredom-inducing tasks. Study 1, involving 80 participants (42 women and 38 men, aged 20-63), replicates previous findings, by demonstrating that impulsive individuals report greater boredom following a boring task. Study 2 then extends this, using 20 participants (9 women and 12 men, aged 18-24), to show that hypothalamic-pituitary-adrenal (HPA) axis activity, specifically heightened salivary cortisol responses, mediate the link between impulsivity and boredom following a boring task. Collectively, these results demonstrate that HPA axis activity may underline the relationship between trait-impulsivity and boredom by extending previous work and offering a novel insight into potential mechanisms. These findings offer promise for personalised interventions, designed for high impulsivity individuals, to alleviate the negative impacts of boredom and potentially break the identified feedback loop.


Subject(s)
Boredom , Hydrocortisone , Hypothalamo-Hypophyseal System , Impulsive Behavior , Pituitary-Adrenal System , Saliva , Humans , Male , Impulsive Behavior/physiology , Female , Adult , Young Adult , Hypothalamo-Hypophyseal System/metabolism , Hydrocortisone/metabolism , Pituitary-Adrenal System/metabolism , Saliva/metabolism , Saliva/chemistry , Adolescent , Middle Aged , Self Report , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Personality/physiology
2.
Stem Cell Res ; 69: 103125, 2023 06.
Article in English | MEDLINE | ID: mdl-37229975

ABSTRACT

Pathogenic variants in the alpha-synuclein (SNCA) gene cause familial forms of Parkinson's disease (PD). Here, we describe generation of six isogenic controls from iPS cell lines derived from two PD disease patients carrying the SNCAp.A53T variant. The controls were created using CRISPR/Cas9 technology and are available for use by the PD research community to study A53T-related synucleinopathies.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Parkinson Disease/pathology , Induced Pluripotent Stem Cells/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Gene Expression Regulation , Gene Expression
3.
Front Immunol ; 13: 1067417, 2022.
Article in English | MEDLINE | ID: mdl-36685559

ABSTRACT

Introduction: Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs. Methods: We compare the two approaches for integration of IL2RG transgene for functional correction of HSPCs from patients with X-linked Severe Combined Immunodeficiency (SCID-X1 or XSCID); delivery via current clinical lentivector (LV)-IL2RG versus targeted insertion (TI) of IL2RG via homology-directed repair (HDR) when using an adeno-associated virus (AAV)-IL2RG donor following double-strand DNA break at the endogenous IL2RG locus. Results and discussion: In vitro differentiation of LV- or TI-treated XSCID HSPCs similarly overcome differentiation block into Pre-T-I and Pre-T-II lymphocytes but we observed significantly superior development of NK cells when corrected by TI (40.7% versus 4.1%, p = 0.0099). Transplants into immunodeficient mice demonstrated robust engraftment (8.1% and 23.3% in bone marrow) for LV- and TI-IL2RG HSPCs with efficient T cell development following TI-IL2RG in all four patients' HSPCs. Extensive specificity analysis of CRISPR-Cas9 editing with rhAmpSeq covering 82 predicted off-target sites found no evidence of indels in edited cells before (in vitro) or following transplant, in stark contrast to LV's non-targeted vector integration sites. Together, the improved efficiency and safety of IL2RG correction via CRISPR-Cas9-based TI approach provides a strong rationale for a clinical trial for treatment of XSCID patients.


Subject(s)
X-Linked Combined Immunodeficiency Diseases , Animals , Mice , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , Dependovirus , CRISPR-Cas Systems , Mice, SCID , Hematopoietic Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL