Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
PLoS One ; 19(3): e0290206, 2024.
Article in English | MEDLINE | ID: mdl-38457366

ABSTRACT

To date, only a few studies focused on the carbon monoxide (CO) production during waste composting; all targeted on CO inside piles. Here, the CO net emissions from compost piles and the assessment of worker's occupational risk of exposure to CO at large-scale composting plants are shown for the first time. CO net emissions were measured at two plants processing green waste, sewage sludge, or undersize fraction of municipal solid waste. Effects of the location of piles (hermetised hall vs. open yard) and turning (before vs. after) were studied. Higher CO net emission rates were observed from piles located in a closed hall. The average CO flux before turning was 23.25 and 0.60 mg‧m-2‧h-1 for hermetised and open piles, respectively, while after- 69.38 and 5.11 mg‧m-2‧h-1. The maximum CO net emissions occurred after the compost was turned (1.7x to 13.7x higher than before turning). The top sections of hermetised piles had greater CO emissions compared to sides. Additionally, 5% of measurement points of hermetised piles switched to 'CO sinks'. The 1-h concentration in hermetised composting hall can reach max. ~50 mg CO∙m-3 before turning, and >115 mg CO∙m-3 after, exceeding the WHO thresholds for a 1-h and 15-min exposures, respectively.


Subject(s)
Composting , Occupational Exposure , Carbon Monoxide , Soil , Solid Waste
2.
J Environ Manage ; 351: 119764, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100867

ABSTRACT

Indoor air, especially with suspended particulate matter (PM), can be a carrier of airborne infectious pathogens. Without sufficient ventilation, airborne infectious diseases can be transmitted from one person to another. Indoor air quality (IAQ) significantly impacts people's daily lives as people spend 90% of their time indoors. An industrial-grade air cleaner prototype (filtration + ultraviolet light) was previously upgraded to clean indoor air to improve IAQ on two metrics: particulate matter (PM) and viable airborne bacteria. Previous experiments were conducted to test its removal efficiency on PM and airborne bacteria between the inlet and treated air. However, the longer-term improvement on IAQ would be more informative. Therefore, this research focused on quantifying longer-term improvement in a testing environment (poultry facility) loaded with high and variable PM and airborne bacteria concentrations. A 25-day experiment was conducted to treat indoor air using an air cleaner prototype with intermittent ON and OFF days in which PM and viable airborne bacteria were measured to quantify the treatment effect. The results showed an average of 55% reduction of total suspended particulate (TSP) concentration between OFF days (110 µg/m3) and ON days (49 µg/m3). An average of 47% reduction of total airborne viable bacteria concentrations was achieved between OFF days (∼3200 CFU/m3) and ON days (∼2000 CFU/m3). A cross-validation (CV) model was established to predict PM concentrations with five input variables, including the status of the air cleaner, time (h), ambient temperature, indoor relative humidity, and day of the week to help simulate the air-cleaning effect of this prototype. The model can approximately predict the air quality trend, and future improvements may be made to improve its accuracy.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Humans , Particulate Matter/analysis , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Ultraviolet Rays , Quality Improvement , Bacteria , Environmental Monitoring , Air Pollutants/analysis , Particle Size
3.
Front Bioeng Biotechnol ; 11: 1126737, 2023.
Article in English | MEDLINE | ID: mdl-36845185

ABSTRACT

Carbon monoxide (CO) is an essential "building block" for producing everyday chemicals on industrial scale. Carbon monoxide can also be generated though a lesser-known and sometimes forgotten biorenewable pathways that could be explored to advance biobased production from large and more sustainable sources such as bio-waste treatment. Organic matter decomposition can generate carbon monoxide both under aerobic and anaerobic conditions. While anaerobic carbon monoxide generation is relatively well understood, the aerobic is not. Yet many industrial-scale bioprocesses involve both conditions. This review summarizes the necessary basic biochemistry knowledge needed for realization of initial steps towards biobased carbon monoxide production. We analyzed for the first time, the complex information about carbon monoxide production during aerobic, anaerobic bio-waste treatment and storage, carbon monoxide-metabolizing microorganisms, pathways, and enzymes with bibliometric analysis of trends. The future directions recognizing limitations of combined composting and carbon monoxide production have been discussed in greater detail.

4.
Animals (Basel) ; 13(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36766257

ABSTRACT

In cheetahs, age at first parturition correlates negatively with reproductive lifespan (asymmetric reproductive aging); therefore, breeding cheetahs at a young age is essential to maximize reproductive performance in this species. However, younger females display a significantly reduced frequency of copulatory behaviour, which negatively affects breeding. Volatile organic compounds (VOCs) are known to regulate appropriate behavioural responses in various species, including reproductive behaviour; moreover, they have proven to play a role in captive breeding methods in cheetahs, as well as mate choice. Therefore, the objective of this study was to evaluate the effect of a synthetic scent (SS) on the frequency of the five oestrous behaviour(s) (sniff, rub, roll, spray, and meow-chirp) known to be indicative of oestrus in female cheetahs. Based on the results of a previous study from our research group, five VOCs, identified in the marking fluid of male cheetahs, and known to be pheromones involved in reproductive behaviour, were used to create the SS. This was accomplished by mixing benzaldehyde, acetophenone, indole, dimethyl disulphide and phenol with (99.9%) ethanol. Seven female cheetahs were then observed for one oestrus cycle without stimulation (control) and then once again while exposed to the SS (treatment), which was sprayed on foil trays placed around the outside of each enclosure. The occurrence of the five oestrous behaviours was recorded and tallied per day of observations. Although the SS did not have a significant effect on the frequency of oestrous behaviours displayed by the females used in this study, five of the seven (71%) did show an increase in their behaviour with the SS when oestrogen concentrations were at their highest (peak oestrus), including three of the four younger females. The SS also significantly increased the sniffing behaviour in general. Although the results of this study do indicate that VOCs influence cheetahs and their behaviour, firm conclusions cannot be drawn due to the low number of animals used, as well as the significant effect the observation methods had on the results. Nonetheless, this study represents the first of this kind in cheetahs, therefore representing an important step in determining the role of VOCs in aiding breeding in captivity.

5.
J Environ Qual ; 52(4): 897-906, 2023.
Article in English | MEDLINE | ID: mdl-36758189

ABSTRACT

Numerous studies have investigated effects of long-term manure application on total phosphorus (P) and inorganic P (Pi ), but few have evaluated soil organic P (Po ). Little is known about crop management effects on Po in soils with varying minerology. In this study, sequential fractionation was used to characterize specific P forms after 25 years of broiler litter (BL) or ammonium nitrate (Con) applications to an Alabama Hartsells soil. Crops (corn [Zea mays L.], soybean [Glycine Willd.], and corn or soybean with a wheat [Triticum aestivum L.] cover crop) were under conventional tillage (CT) or no-tillage (NT). Regardless of crop, tillage, or fertilizer type, the proportion of extractable Pi was relatively stable at 21%-49% at 0-5 cm and 25%-45% at 5-10 cm. Extractable Pi ranged from 0.69 to 2.4 mg g-1 . BL increased total extractable Pi (p ≤ 0.001) at 0-5 cm and 5-10 cm. Total extractable P was influenced at 0-5 cm (p ≤ 0.006) by both tillage and fertilization type, but not at 5-10 cm or at either depth in soybean plots. Long-term BL application increased total extractable soil P at 0-5 cm. In corn systems, CT did not reduce P loading to topsoil or result in P leaching to lower soil depths, compared to NT. Soybean and soybean-wheat reduced P loading in BL plots, compared to corn and corn-wheat. Soil Po was classed in the order of monoesters > phytate and polyphosphates, where most was extractable with NaOH. BL increased extractable Po in all fractions. Care should be taken when applying BL to highly weathered soils to avoid legacy Po accumulation. Soybean rotations and cover crops could help remediate P-laden soils after repeated BL application.


Subject(s)
Agriculture , Soil , Animals , Alabama , Phosphorus , Manure , Chickens , Crops, Agricultural , Glycine max , Zea mays , Fertilizers , Triticum
6.
Article in English | MEDLINE | ID: mdl-36498208

ABSTRACT

Since the COVID-19 pandemic, improving indoor air quality (IAQ) has become vital for the public as COVID-19 and other infectious diseases can transmit via inhalable aerosols. Air cleaning devices with filtration and targeted pollutant treatment capabilities can help improve IAQ. However, only a few filtration/UV devices have been formally tested for their effectiveness, and little data is publicly available and UV doses comparable. In this research, we upgraded a particulate matter (PM) air filtration prototype by adding UV-C (germicidal) light. We developed realistic UV dose metrics for fast-moving air and selected performance scenarios to quantify the mitigation effect on viable airborne bacteria and PM. The targeted PM included total suspended particulate (TSP) and a coarse-to-fine range sized at PM10, PM4, PM2.5, and PM1. The PM and viable airborne bacteria concentrations were compared between the inlet and outlet of the prototype at 0.5 and 1.0 m3/s (low and high) air flow modes. The upgraded prototype inactivated nearly 100% of viable airborne bacteria and removed up to 97% of TSP, 91% of PM10, 87% of PM4, 87% of PM2.5, and 88% of PM1. The performance in the low flow rate mode was generally better than in the high flow rate mode. The combination of filtration and UV-C treatment provided 'double-barrier' assurance for air purification and lowered the risk of spreading infectious micro-organisms.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Humans , Particulate Matter/analysis , Pandemics , Particle Size , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Bacteria , Air Pollutants/analysis , Environmental Monitoring
7.
Animals (Basel) ; 12(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36078003

ABSTRACT

Scent is known to play an important role in the reproduction of cheetahs and other felids. In fact, the presence/odor of a male cheetah has been noted to trigger the estrous cycle in females. The objective of this study was to analyze the marking fluid (MF) of male cheetahs from different breeding groups to determine the composition of volatile organic compounds (VOCs) present, with the aim of identifying potential pheromones relating to sexual behavior/attraction in this species. Four breeding (B; age: 8.9 ± 1.3 years old) and four non-breeding (NB; age: 5.5 ± 0.8 years old) males were selected for this study. Samples were collected into a glass beaker, transferred immediately into a 20 mL glass screw-cap vial with a polytetrafluoroethylene (PTFE) coated silicone septum, and stored until analyzed by headspace solid-phase microextraction (HS-SPME) using gas chromatography-mass spectrometry. A contingency test with Fisher's exact test, using the frequency (FREQ) procedure of SAS 9.4, was conducted to determine the difference between the number of VOCs identified per breeding group; furthermore, differences in relative concentration (RC) of the identified VOCs between breeding groups were analyzed using ANOVA for repeated measures with the GLIMMIX procedure. From the 13 MF samples analyzed, 53 VOCs were identified, and 12 were identified in all the samples. Five of these (dimethyl disulfide, benzaldehyde, acetophenone, phenol, and indole) are known to be involved in attraction/sexual behavior in mammals. Between the two groups, the RC of indole was significantly higher in the NB group, whereas the RC of dodecanoic acid was significantly higher in the B group. Although not significant, the RC of benzaldehyde was higher in the B versus the NB group. The results of this study do support the hypothesis of differences in VOCs' between B and NB male cheetahs. However, the overlapping of age and breeding status and the diet differences could not be controlled. Still, the evidence of changes in MF composition in male cheetahs necessitates further studies on possible strategies to improve reproduction in captivity.

8.
ACS Omega ; 7(23): 19043-19047, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722010

ABSTRACT

Although the "skunky" odor characteristic of cannabis has been widely referenced, its cause has been historically misassigned to unspecified "skunky terpenes". Recent reports from two independent research groups, the Koziel team (March and April 2021) and Oswald team (August and November 2021), have corrected this misassignment by linking the "skunky" character of industrial hemp and cannabis to 3-methyl-2-butene-1-thiol (321MBT). A recent USPTO patent application review clearly indicated that the Oswald team should take full credit for the discovery of this link with respect to cannabis. However, the August 19, 2021 publication of their patent application appears to be their formal public disclosure of 321MBT as the primary source odorant which is responsible for the targeted "skunky" odor. This date is well after the March and April 2021 public disclosures by the Koziel team for the 321MBT/"skunky" odor link relative to both cannabis and industrial hemp. This Viewpoint summarizes the investigative strategy leading to the public disclosure of this historically elusive link. It is presented from the perspective of the rapid multidimensional-gas chromatography-mass spectrometry-olfactometry (i.e., MDGC-MS-O) based odorant-prioritization "screening" approach, as applied by the Koziel team.

9.
Anal Chim Acta ; 1206: 339565, 2022 May 08.
Article in English | MEDLINE | ID: mdl-35473862

ABSTRACT

Diagnosis of diseases in cattle at early stages is of significance both economically and clinically. Non-invasive diagnostic samples such as breath are preferred since they cause minimum inconvenience or pain to the animals. In this review, different sampling devices, sample preparation techniques, instrumentation, and statistical analysis approaches that have been designed and tested are described and compared in terms of their applicability in the diagnosis of common cattle diseases. The sample preparation techniques used include solid-phase microextraction (SPME), sorbent extraction, and needle trap device (NTD). The collected volatile organic compounds (VOCs) are determined using gas chromatography-mass spectrometry (GC-MS) and the electronic nose (e-nose) technology. The majority of studies are focused on the diagnosis of ketosis and bovine respiratory disease (BRD). The common diseases and potential biomarkers are summarized and discussed. Due to the differences in the number of subjects and the type of animals used in different studies, the results are not consistent. Acetone, although detected in almost all studies and subjects, has elevated concentrations in cattle suffering from ketosis. The results of currently available studies were not indicative of specific biomarkers for BRD, and further investigation is required. The current studies have shortcomings in regards to defining useful VOC profiles, the impact on animal welfare, and the practical application at the producer level. While the presented approaches are promising, more controlled, standardized clinical studies need to be conducted before breath analysis can be routinely performed on cattle.


Subject(s)
Cattle Diseases , Ketosis , Volatile Organic Compounds , Animals , Biomarkers , Breath Tests , Cattle , Cattle Diseases/diagnosis , Humans , Ketosis/diagnosis , Ketosis/veterinary , Volatile Organic Compounds/analysis
10.
Article in English | MEDLINE | ID: mdl-34948693

ABSTRACT

Solving environmental odor issues can be confounded by many analytical, technological, and socioeconomic factors. Considerable know-how and technologies can fail to properly identify odorants responsible for the downwind nuisance odor and, thereby, focus on odor mitigation strategies. We propose enabling solutions to environmental odor issues utilizing troubleshooting techniques developed for the food, beverage, and consumer products industries. Our research has shown that the odorant impact-priority ranking process can be definable and relatively simple. The initial challenge is the prioritization of environmental odor character from the perspective of the impacted citizenry downwind. In this research, we utilize a natural model from the animal world to illustrate the rolling unmasking effect (RUE) and discuss it more systematically in the context of the proposed environmental odorant prioritization process. Regardless of the size and reach of an odor source, a simplification of odor character and composition typically develops with increasing dilution downwind. An extreme odor simplification-upon-dilution was demonstrated for the prehensile-tailed porcupine (P.T. porcupine); its downwind odor frontal boundary was dominated by a pair of extremely potent character-defining odorants: (1) 'onion'/'body odor' and (2) 'onion'/'grilled' odorants. In contrast with the outer-boundary simplicity, the near-source assessment presented considerable compositional complexity and composite odor character difference. The ultimate significance of the proposed RUE approach is the illustration of naturally occurring phenomena that explain why some environmental odors and their sources can be challenging to identify and mitigate using an analytical-only approach (focused on compound identities and concentrations). These approaches rarely move beyond comprehensive lists of volatile compounds emitted by the source. The novelty proposed herein lies in identification of those few compounds responsible for the downwind odor impacts and requiring mitigation focus.


Subject(s)
Body Odor , Odorants , Animals , Industry
11.
Animals (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34827872

ABSTRACT

The cheetah species (Acinonyx jubatus) is currently listed as vulnerable according to the International Union for Conservation of Nature (IUCN). Captive breeding has long since been used as a method of conservation of the species, with the aim to produce a healthy, strong population of cheetahs with an increased genetic variety when compared to their wild counterparts. This would then increase the likelihood of survivability once released into protected areas. Unfortunately, breeding females have been reported to be difficult due to the age of these animals. Older females are less fertile, have more difficult parturition, and are susceptible to asymmetric reproductive aging whereas younger females tend to show a significantly lower frequency of mating behaviour than that of older females, which negatively affects breeding introductions, and therefore mating. Nonetheless, the experience from breeding methods used in some breeding centres in South Africa and the Netherlands, which also rely on the role that semiochemicals play in breeding, proves that cheetahs can be bred successfully in captivity. This review aims to give the reader an in-depth overview of cheetahs' reproductive physiology and behaviour, focusing on the role that pheromones play in this species. Furthermore, it aims to provide new insight into the use of semiochemicals to improve conservation strategies through captive breeding.

12.
Front Bioeng Biotechnol ; 9: 659609, 2021.
Article in English | MEDLINE | ID: mdl-34041230

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infections cause significant economic losses to swine producers every year. Aerosols containing infectious PRRSV are an important route of transmission, and proper treatment of air could mitigate the airborne spread of the virus within and between barns. Previous bioaerosol studies focused on the microbiology of PRRSV aerosols; thus, the current study addressed the engineering aspects of virus aerosolization and collection. Specific objectives were to (1) build and test a virus aerosolization system, (2) achieve a uniform and repeatable aerosol generation and collection throughout all replicates, (3) identify and minimize sources of variation, and (4) verify that the collection system (impingers) performed similarly. The system for virus aerosolization was built and tested (Obj. 1). The uniform airflow distribution was confirmed using a physical tracer (<12% relative standard deviation) for all treatments and sound engineering control of flow rates (Obj. 2). Theoretical uncertainty analyses and mass balance calculations showed <3% loss of air mass flow rate between the inlet and outlet (Obj. 3). A comparison of TCID50 values among impinger fluids showed no statistical difference between any two of the three trials (p-value = 0.148, 0.357, 0.846) (Obj. 4). These results showed that the readiness of the system for research on virus aerosolization and treatment (e.g., by ultraviolet light), as well as its potential use for research on other types of airborne pathogens and their mitigation on a laboratory scale.

13.
Animals (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946294

ABSTRACT

It is essential to mitigate gaseous emissions that result from poultry and livestock production to increase industry sustainability. Odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have detrimental effects on the quality of life in rural communities, the environment, and climate. This study's objective was to evaluate the photocatalytic UV treatment of gaseous emissions of odor, odorous VOCs, NH3, and other gases (GHGs, O3-sometimes considered as by-products of UV treatment) from stored swine manure on a pilot-scale. The manure emissions were treated in fast-moving air using a mobile lab equipped with UV-A and UV-C lights and TiO2-based photocatalyst. Treated gas airflow (0.25-0.76 m3∙s-1) simulates output from a small ventilation fan in a barn. Through controlling the light intensity and airflow, UV dose was tested for techno-economic analyses. The treatment effectiveness depended on the UV dose and wavelength. Under UV-A (367 nm) photocatalysis, the percent reduction of targeted gases was up to (i) 63% of odor, (ii) 51%, 51%, 53%, 67%, and 32% of acetic acid, propanoic acid, butanoic acid, p-cresol, and indole, respectively, (iii) 14% of nitrous oxide (N2O), (iv) 100% of O3, and 26% generation of CO2. Under UV-C (185 + 254 nm) photocatalysis, the percent reductions of target gases were up to (i) 54% and 47% for p-cresol and indole, respectively, (ii) 25% of N2O, (iii) 71% of CH4, and 46% and 139% generation of CO2 and O3, respectively. The results proved that the UV technology was sufficiently effective in treating odorous gases, and the mobile lab was ready for farm-scale trials. The UV technology can be considered for the scaled-up treatment of emissions and air quality improvement inside livestock barns. Results from this study are needed to inform the experimental design for future on-farm research with UV-A and UV-C.

14.
Materials (Basel) ; 14(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802515

ABSTRACT

In work, data from carbonization of the eight main municipal solid waste components (carton, fabric, kitchen waste, paper, plastic, rubber, paper/aluminum/polyethylene (PAP/AL/PE) composite packaging pack, wood) carbonized at 300-500 °C for 20-60 min were used to build regression models to predict the biochar properties (proximate and ultimate analysis) for particular components. These models were then combined in general models that predict the properties of char made from mixed waste components depending on pyrolysis temperature, residence time, and share of municipal solid waste components. Next, the general models were compared with experimental data (two mixtures made from the above-mentioned components carbonized at the same conditions). The comparison showed that most of the proposed general models had a determination coefficient (R2) over 0.6, and the best prediction was found for the prediction of biochar mass yield (R2 = 0.9). All models were implemented into a spreadsheet to provide a simple tool to determine the potential of carbonization of municipal solid waste/refuse solid fuel based on a local mix of major components.

15.
J Environ Manage ; 287: 112235, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33721761

ABSTRACT

Phosphorus (P) is a limited yet essential resource. P cannot be replaced, but it can be recovered from waste. We proposed the TRIZ approach (Teoria reszenija izobretatielskich zadacz - Rus., Theory of Inventive Problem Solving - Eng.) to identify a feasible solution. We aimed at minimizing the environmental impact and, by eliminating contradictions, proposed viable technical solutions. P recovery can be more sustainable based on circular economy and 4Rs (reduction, recovery, reuse, and recycling). The TRIZ approach identified sewage sludge (SS) as waste with a large potential for P recovery (up to 90%). Successful selection and application of SS management and P recovery require a transdisciplinary approach to overcome the various socio-economic, environmental, technical, and legal aspects. The review provides an understanding of principles that must be taken to improve understanding of the whole process of P recovery from wastewater while building on the last two decades of research.


Subject(s)
Phosphorus , Wastewater , Recycling , Sewage , Waste Disposal, Fluid
16.
Article in English | MEDLINE | ID: mdl-33562692

ABSTRACT

Livestock production systems generate nuisance odor and gaseous emissions affecting local communities and regional air quality. There are also concerns about the occupational health and safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic challenges of animal farming are needed. We have been scaling up the photocatalytic treatment of emissions from lab-scale, aiming at farm-scale readiness. In this paper, we present the design, testing, and commissioning of a mobile laboratory for on-farm research and demonstration of performance in simulated farm conditions before testing to the farm. The mobile lab is capable of treating up to 1.2 m3/s of air with titanium dioxide, TiO2-based photocatalysis, and adjustable UV-A dose based on LED lamps. We summarize the main technical requirements, constraints, approach, and performance metrics for a mobile laboratory, such as the effectiveness (measured as the percent reduction) and cost of photocatalytic treatment of air. The commissioning of all systems with standard gases resulted in ~9% and 34% reduction of ammonia (NH3) and butan-1-ol, respectively. We demonstrated the percent reduction of standard gases increased with increased light intensity and treatment time. These results show that the mobile laboratory was ready for on-farm deployment and evaluating the effectiveness of UV treatment.


Subject(s)
Air Pollution , Livestock , Agriculture , Air Pollution/analysis , Air Pollution/prevention & control , Ammonia/analysis , Animals , Gases , Laboratories
17.
Materials (Basel) ; 14(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374414

ABSTRACT

The decrease in the calorific value of refuse-derived fuel (RDF) is an unintended outcome of the progress made toward more sustainable waste management. Plastics and paper separation and recycling leads to the overall decrease in waste's calorific value, further limiting its applicability for thermal treatment. Pyrolysis has been proposed to densify energy in RDF and generate carbonized solid fuel (CSF). The challenge is that the feedstock composition of RDF is variable and site-specific. Therefore, the optimal pyrolysis conditions have to be established every time, depending on feedstock composition. In this research, we developed a model to predict the higher heating value (HHV) of the RDF composed of eight morphological refuse groups after low-temperature pyrolysis in CO2 (300-500 °C and 60 min) into CSF. The model considers cardboard, fabric, kitchen waste, paper, plastic, rubber, PAP/AL/PE (paper/aluminum/polyethylene) composite packaging pack, and wood, pyrolysis temperature, and residence time. The determination coefficients (R2) and Akaike information criteria were used for selecting the best model among four mathematical functions: (I) linear, (II) second-order polynomial, (III) factorial regression, and (IV) quadratic regression. For each RDF waste component, among these four models, the one best fitted to the experimental data was chosen; then, these models were integrated into the general model that predicts the HHV of CSF from the blends of RDF. The general model was validated experimentally by the application to the RDF blends. The validation revealed that the model explains 70-75% CSF HHV data variability. The results show that the optimal pyrolysis conditions depend on the most abundant waste in the waste mixture. High-quality CSF can be obtained from wastes such as paper, carton, plastic, and rubber when processed at relatively low temperatures (300 °C), whereas wastes such as fabrics and wood require higher temperatures (500 °C). The developed model showed that it is possible to achieve the CSF with the highest HHV value by optimizing the pyrolysis of RDF with the process temperature, residence time, and feedstock blends pretreatment.

18.
Front Chem ; 8: 613, 2020.
Article in English | MEDLINE | ID: mdl-32903735

ABSTRACT

Poultry farmers are producing eggs, meat, and feathers with increased efficiency and lower carbon footprint. Technologies to address concerns about the indoor air quality inside barns and the gaseous emissions from farms to the atmosphere continue to be among industry priorities. We have been developing and scaling up a UV air treatment that has the potential to reduce odor and other gases on the farm scale. In our recent laboratory-scale study, the use of UV-A (a less toxic ultraviolet light, a.k.a. "black light") and a special TiO2-based photocatalyst reduced concentrations of several important air pollutants (NH3, CO2, N2O, O3) without impact on H2S and CH4. Therefore, the objectives of this research were to (1) scale up the UV treatment to pilot scale, (2) evaluate the mitigation of odor and odorous volatile organic compounds (VOCs), and (3) complete preliminary economic analyses. A pilot-scale experiment was conducted under commercial poultry barn conditions to evaluate photocatalyst coatings on surfaces subjected to UV light under field conditions. In this study, the reactor was constructed to support interchangeable wall panels and installed on a poultry farm. The effects of a photocatalyst's presence (photocatalysis and photolysis), UV intensity (LED and fluorescent), and treatment time were studied in the pilot-scale experiments inside a poultry barn. The results of the pilot-scale experiments were consistent with the laboratory-scale one: the percent reduction under photocatalysis was generally higher than photolysis. In addition, the percent reduction of target gases at a high light intensity and long treatment time was higher. The percent reduction of NH3 was 5-9%. There was no impact on H2S, CH4, and CO2 under any experimental conditions. N2O and O3 concentrations were reduced at 6-12% and 87-100% by both photolysis and photocatalysis. In addition, concentrations of several VOCs responsible for livestock odor were reduced from 26 to 62% and increased with treatment time and light intensity. The odor was reduced by 18%. Photolysis treatment reduced concentrations of N2O, VOCs, and O3, only. The initial economic analysis has shown that LEDs are more efficient than fluorescent lights. Further scale-up and research at farm scale are warranted.

19.
Animals (Basel) ; 10(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882813

ABSTRACT

The aim of this research was to evaluate the effect of biochar diet supplementation for broiler chickens on (1) ammonia and odor emissions from manure, (2) feed conversion ratio and daily weight gain, and (3) selected meat quality and sensory parameters. Beechwood biochar (BC, 2 and 4%) and BC-glycerin-aluminosilicates mix (BCM, 3 and 6%) were tested as dietary additives. A total of 750 chicken broilers (Ross 308) were divided into five dietary groups with five replicates per group (n = 5, 30 birds in each replicate) and reared on a littered floor for 5 weeks. Both feed additives showed a significant reduction of ammonia emissions by up to 17%, while the reduction of odor emissions was not statistically significant. The feed conversion ratio increased by 8% for the highest concentration of the mixture. The change of the treated broilers' average body weight ranged in the last week of the experiment from 0 to -7%, with the most negative effect for the highest dose of the mixture. Sensory analysis of the sous-vide cooked breasts showed no significant differences.

20.
Front Chem ; 8: 656, 2020.
Article in English | MEDLINE | ID: mdl-32850668

ABSTRACT

Mitigation of potentially hazardous and malodor compounds emitted from animal waste is needed to improve the sustainability of livestock agriculture. Bacteria control the generation of these compounds and also depend on the pH of manure. Influencing swine manure pH, especially on the liquid-air interface, may lead to a reduction of emission of odorous and hazardous compounds. The objective of this experiment was to test highly alkaline and porous (HAP) modified biochar with pH = 9.2 and red oak (RO) biochar with pH = 7.5 influence on swine manure pH acquired from the outdoor storage and deep pit storage under a barn. HAP and RO biochars were topically applied on the outdoor-stored (pH = 7.55), and pit (pH = 8.00) manures and spatial pH (every 1 mm of depth) were measured on days 0, 2, and 4. Results showed that HAP biochar increased outdoor-stored manure pH on day 4, particularly within the top 10 mm of depth, where pH ranged from 7.79 to 8.90, while in the case of RO pH ranged between 7.46 and 7.66, i.e., similar to control (7.57-7.64). Both biochars decreased pit-stored manure pH within the top 10 mm of depth (in comparison with the control pH of 8.36-8.47) to 8.19-8.30 (HAP), and 8.18-8.29 (RO) on day 4. However, differences were not considerable. The reason for the insignificant effect of biochars on pit manure was likely due to its higher buffer capacity in comparison with the outdoor-stored manure.

SELECTION OF CITATIONS
SEARCH DETAIL
...