Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pediatr Nephrol ; 38(6): 1793-1800, 2023 06.
Article in English | MEDLINE | ID: mdl-36357634

ABSTRACT

BACKGROUND: Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS: We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS: The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS: The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Glomerulonephritis, Membranous , Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Nephrotic Syndrome , Child , Humans , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Nephrosis, Lipoid/diagnosis , Nephrosis, Lipoid/drug therapy , Nephrosis, Lipoid/genetics , Glomerulosclerosis, Focal Segmental/diagnosis , Glomerulosclerosis, Focal Segmental/drug therapy , Glomerulosclerosis, Focal Segmental/genetics , Genome-Wide Association Study , Steroids , Risk Factors
2.
Pediatr Nephrol ; 37(11): 2643-2656, 2022 11.
Article in English | MEDLINE | ID: mdl-35211795

ABSTRACT

BACKGROUND: Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. METHODS: Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. RESULTS: Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. CONCLUSION: We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Drosophila melanogaster , Nephrotic Syndrome , Nuclear Pore Complex Proteins , Podocytes , Adult , Animals , Child , Disease Models, Animal , Drosophila melanogaster/genetics , Drug Resistance/genetics , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , High-Throughput Nucleotide Sequencing , Humans , Mutation , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Nuclear Pore Complex Proteins/genetics , Podocytes/metabolism
3.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33508234

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Subject(s)
Carrier Proteins/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Glomerulosclerosis, Focal Segmental/genetics , Intranuclear Space/metabolism , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Nerve Tissue Proteins/genetics , Adult , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line , Child , Child, Preschool , Codon, Nonsense , Developmental Disabilities/metabolism , Epilepsy/metabolism , Female , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Kidney/metabolism , Male , Mice , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Phenotype , Podocytes/metabolism , Exome Sequencing
4.
Clin J Am Soc Nephrol ; 15(7): 983-994, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32317330

ABSTRACT

BACKGROUND AND OBJECTIVES: Intensified immunosuppression in steroid-resistant nephrotic syndrome is broadly applied, with disparate outcomes. This review of patients from the United Kingdom National Study of Nephrotic Syndrome cohort aimed to improve disease stratification by determining, in comprehensively genetically screened patients with steroid-resistant nephrotic syndrome, if there is an association between response to initial intensified immunosuppression and disease progression and/or post-transplant recurrence. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Pediatric patients with steroid-resistant nephrotic syndrome were recruited via the UK National Registry of Rare Kidney Diseases. All patients were whole-genome sequenced, whole-exome sequenced, or steroid-resistant nephrotic syndrome gene-panel sequenced. Complete response or partial response within 6 months of starting intensified immunosuppression was ascertained using laboratory data. Response to intensified immunosuppression and outcomes were analyzed according to genetic testing results, pattern of steroid resistance, and first biopsy findings. RESULTS: Of 271 patients, 178 (92 males, median onset age 4.7 years) received intensified immunosuppression with response available. A total of 4% of patients with monogenic disease showed complete response, compared with 25% of genetic-testing-negative patients (P=0.02). None of the former recurred post-transplantation. In genetic-testing-negative patients, 97% with complete response to first intensified immunosuppression did not progress, whereas 44% of nonresponders developed kidney failure with 73% recurrence post-transplant. Secondary steroid resistance had a higher complete response rate than primary/presumed resistance (43% versus 23%; P=0.001). The highest complete response rate in secondary steroid resistance was to rituximab (64%). Biopsy results showed no correlation with intensified immunosuppression response or outcome. CONCLUSIONS: Patients with monogenic steroid-resistant nephrotic syndrome had a poor therapeutic response and no post-transplant recurrence. In genetic-testing-negative patients, there was an association between response to first intensified immunosuppression and long-term outcome. Patients with complete response rarely progressed to kidney failure, whereas nonresponders had poor kidney survival and a high post-transplant recurrence rate. Patients with secondary steroid resistance were more likely to respond, particularly to rituximab.


Subject(s)
Immunosuppressive Agents/therapeutic use , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Rituximab/therapeutic use , Adolescent , Child , Child, Preschool , Cyclophosphamide/therapeutic use , Cyclosporine/therapeutic use , Disease Progression , Drug Resistance , Female , Genetic Testing , Humans , Immunosuppression Therapy/methods , Infant , Infant, Newborn , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/surgery , Kidney Transplantation , Male , Nephrotic Syndrome/pathology , Nephrotic Syndrome/surgery , Postoperative Period , Recurrence , Steroids , Tacrolimus/therapeutic use , Treatment Outcome
5.
Kidney Int ; 91(4): 937-947, 2017 04.
Article in English | MEDLINE | ID: mdl-28117080

ABSTRACT

Steroid Resistant Nephrotic Syndrome (SRNS) in children and young adults has differing etiologies with monogenic disease accounting for 2.9-30% in selected series. Using whole exome sequencing we sought to stratify a national population of children with SRNS into monogenic and non-monogenic forms, and further define those groups by detailed phenotypic analysis. Pediatric patients with SRNS were identified via a national United Kingdom Renal Registry. Whole exome sequencing was performed on 187 patients, of which 12% have a positive family history with a focus on the 53 genes currently known to be associated with nephrotic syndrome. Genetic findings were correlated with individual case disease characteristics. Disease causing variants were detected in 26.2% of patients. Most often this occurred in the three most common SRNS-associated genes: NPHS1, NPHS2, and WT1 but also in 14 other genes. The genotype did not always correlate with expected phenotype since mutations in OCRL, COL4A3, and DGKE associated with specific syndromes were detected in patients with isolated renal disease. Analysis by primary/presumed compared with secondary steroid resistance found 30.8% monogenic disease in primary compared with none in secondary SRNS permitting further mechanistic stratification. Genetic SRNS progressed faster to end stage renal failure, with no documented disease recurrence post-transplantation within this cohort. Primary steroid resistance in which no gene mutation was identified had a 47.8% risk of recurrence. In this unbiased pediatric population, whole exome sequencing allowed screening of all current candidate genes. Thus, deep phenotyping combined with whole exome sequencing is an effective tool for early identification of SRNS etiology, yielding an evidence-based algorithm for clinical management.


Subject(s)
Genomics/methods , Mutation , Nephrotic Syndrome/congenital , Precision Medicine , Adolescent , Age of Onset , Child , Child, Preschool , Cohort Studies , Disease Progression , Exome , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heredity , High-Throughput Nucleotide Sequencing , Humans , Infant , Intracellular Signaling Peptides and Proteins/genetics , Kaplan-Meier Estimate , Kidney/pathology , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/therapy , Male , Membrane Proteins/genetics , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/genetics , Nephrotic Syndrome/therapy , Pedigree , Phenotype , Predictive Value of Tests , Prognosis , Registries , Risk Factors , United Kingdom , WT1 Proteins/genetics , Young Adult
6.
J Am Soc Nephrol ; 28(5): 1614-1621, 2017 May.
Article in English | MEDLINE | ID: mdl-27932480

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS), a heterogeneous disorder of the renal glomerular filtration barrier, results in impairment of glomerular permselectivity. Inheritance of genetic SRNS may be autosomal dominant or recessive, with a subset of autosomal recessive SRNS presenting as congenital nephrotic syndrome (CNS). Mutations in 53 genes are associated with human SRNS, but these mutations explain ≤30% of patients with hereditary cases and only 20% of patients with sporadic cases. The proteins encoded by these genes are expressed in podocytes, and malfunction of these proteins leads to a universal end point of podocyte injury, glomerular filtration barrier disruption, and SRNS. Here, we identified novel disease-causing mutations in membrane-associated guanylate kinase, WW, and PDZ domain-containing 2 (MAGI2) through whole-exome sequencing of a deeply phenotyped cohort of patients with congenital, childhood-onset SRNS. Although MAGI2 has been shown to interact with nephrin and regulate podocyte cytoskeleton and slit diaphragm dynamics, MAGI2 mutations have not been described in human SRNS. We detected two unique frameshift mutations and one duplication in three patients (two families); two siblings shared the same homozygous frameshift mutation, whereas one individual with sporadic SRNS exhibited compound heterozygosity. Two mutations were predicted to introduce premature stop codons, and one was predicted to result in read through of the normal translational termination codon. Immunohistochemistry in kidney sections from these patients revealed that mutations resulted in lack of or diminished podocyte MAGI2 expression. Our data support the finding that mutations in the MAGI2 gene are causal for congenital SRNS.


Subject(s)
Carrier Proteins/genetics , Mutation , Nephrotic Syndrome/congenital , Adaptor Proteins, Signal Transducing , Female , Guanylate Kinases , Humans , Infant , Male , Nephrotic Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...