Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Struct Dyn ; 11(2): 024311, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38655563

ABSTRACT

We present an experimental demonstration of ultrafast electron diffraction (UED) with THz-driven electron bunch compression and time-stamping that enables UED probes with improved temporal resolution. Through THz-driven longitudinal bunch compression, a compression factor of approximately four is achieved. Moreover, the time-of-arrival jitter between the compressed electron bunch and a pump laser pulse is suppressed by a factor of three. Simultaneously, the THz interaction imparts a transverse spatiotemporal correlation on the electron distribution, which we utilize to further enhance the precision of time-resolved UED measurements. We use this technique to probe single-crystal gold nanofilms and reveal transient oscillations in the THz near fields with a temporal resolution down to 50 fs. These oscillations were previously beyond reach in the absence of THz compression and time-stamping.

2.
Nature ; 620(7976): 988-993, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532936

ABSTRACT

Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.

3.
Adv Mater ; 35(2): e2206997, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36440651

ABSTRACT

One central challenge in understanding phonon thermal transport is a lack of experimental tools to investigate frequency-resolved phonon transport. Although recent advances in computation lead to frequency-resolved information, it is hindered by unknown defects in bulk regions and at interfaces. Here, a framework that can uncover microscopic phonon transport information in heterostructures is presented, integrating state-of-the-art ultrafast electron diffraction (UED) with advanced scientific machine learning (SciML). Taking advantage of the dual temporal and reciprocal-space resolution in UED, and the ability of SciML to solve inverse problems involving O ( 10 3 ) $\mathcal{O}({10^3})$ coupled Boltzmann transport equations, the frequency-dependent interfacial transmittance and frequency-dependent relaxation times of the heterostructure from the diffraction patterns are reliably recovered. The framework is applied to experimental Au/Si UED data, and a transport pattern beyond the diffuse mismatch model is revealed, which further enables a direct reconstruction of real-space, real-time, frequency-resolved phonon dynamics across the interface. The work provides a new pathway to probe interfacial phonon transport mechanisms with unprecedented details.

4.
Phys Rev Lett ; 127(22): 227401, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34889631

ABSTRACT

Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host hidden orders after laser excitation.

5.
Nano Lett ; 21(19): 8051-8057, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34529439

ABSTRACT

Vertically stacked transition metal dichalcogenide-graphene heterostructures provide a platform for novel optoelectronic applications with high photoresponse speeds. Photoinduced nonequilibrium carrier and lattice dynamics in such heterostructures underlie these applications but have not been understood. In particular, the dependence of these photoresponses on the twist angle, a key tuning parameter, remains elusive. Here, using ultrafast electron diffraction, we report the simultaneous visualization of charge transfer and electron-phonon coupling in MoS2-graphene heterostructures with different stacking configurations. We find that the charge transfer timescale from MoS2 to graphene varies strongly with twist angle, becoming faster for smaller twist angles, and show that the relaxation timescale is significantly shorter in a heterostructure as compared to a monolayer. These findings illustrate that twist angle constitutes an additional tuning knob for interlayer charge transfer in heterobilayers and deepen our understanding of fundamental photophysical processes in heterostructures, of importance for future applications in optoelectronics and light harvesting.

6.
Nature ; 596(7873): 531-535, 2021 08.
Article in English | MEDLINE | ID: mdl-34433948

ABSTRACT

Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.

7.
Nature ; 592(7854): 376-380, 2021 04.
Article in English | MEDLINE | ID: mdl-33854251

ABSTRACT

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

8.
Nat Commun ; 12(1): 1860, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33767138

ABSTRACT

Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in such materials are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in colloidal semiconductor nanocrystals. Investigation of the excitation energy dependence in a core/shell system shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap of the core in the same system result in transient lattice heating that occurs on a much longer 200 picosecond timescale, dominated by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.

9.
ACS Nano ; 14(4): 4792-4804, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32208676

ABSTRACT

Metal nanocrystals exhibit important optoelectronic and photocatalytic functionalities in response to light. These dynamic energy conversion processes have been commonly studied by transient optical probes to date, but an understanding of the atomistic response following photoexcitation has remained elusive. Here, we use femtosecond resolution electron diffraction to investigate transient lattice responses in optically excited colloidal gold nanocrystals, revealing the effects of nanocrystal size and surface ligands on the electron-phonon coupling and thermal relaxation dynamics. First, we uncover a strong size effect on the electron-phonon coupling, which arises from reduced dielectric screening at the nanocrystal surfaces and prevails independent of the optical excitation mechanism (i.e., inter- and intraband). Second, we find that surface ligands act as a tuning parameter for hot carrier cooling. Particularly, gold nanocrystals with thiol-based ligands show significantly slower carrier cooling as compared to amine-based ligands under intraband optical excitation due to electronic coupling at the nanocrystal/ligand interfaces. Finally, we spatiotemporally resolve thermal transport and heat dissipation in photoexcited nanocrystal films by combining electron diffraction with stroboscopic elastic scattering microscopy. Taken together, we resolve the distinct thermal relaxation time scales ranging from 1 ps to 100 ns associated with the multiple interfaces through which heat flows at the nanoscale. Our findings provide insights into optimization of gold nanocrystals and their thin films for photocatalysis and thermoelectric applications.

10.
Opt Express ; 27(17): 23791-23800, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510279

ABSTRACT

We demonstrate the electromagnetic performance of waveguides for femtosecond electron beam bunch manipulation and compression with strong-field terahertz (THz) pulses. The compressor structure is a dispersion-free exponentially-tapered parallel-plate waveguide (PPWG) that can focus single-cycle THz pulses along one dimension. We show test results of the tapered PPWG structure using electro-optic sampling (EOS) at the interaction region with peak fields of at least 300 kV/cm, given 0.9 µJ of incoming THz energy. We also present a modified shorted design of the tapered PPWG for better beam manipulation and reduced magnetic field as an alternative to a dual-feed approach. As an example, we demonstrate that with 5 µJ of THz energy, the PPWG compresses a 2.5 MeV electron bunch by a compression factor of more than 4, achieving a bunch length of about 18 fs.

11.
Phys Rev Lett ; 123(9): 097601, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31524450

ABSTRACT

Complex systems, which consist of a large number of interacting constituents, often exhibit universal behavior near a phase transition. A slowdown of certain dynamical observables is one such recurring feature found in a vast array of contexts. This phenomenon, known as critical slowing-down, is well studied mostly in thermodynamic phase transitions. However, it is less understood in highly nonequilibrium settings, where the time it takes to traverse the phase boundary becomes comparable to the timescale of dynamical fluctuations. Using transient optical spectroscopy and femtosecond electron diffraction, we studied a photoinduced transition of a model charge-density-wave (CDW) compound LaTe_{3}. We observed that it takes the longest time to suppress the order parameter at the threshold photoexcitation density, where the CDW transiently vanishes. This finding can be captured by generalizing the time-dependent Landau theory to a system far from equilibrium. The experimental observation and theoretical understanding of dynamical slowing-down may offer insight into other general principles behind nonequilibrium phase transitions in many-body systems.

12.
Nano Lett ; 17(12): 7761-7766, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29119791

ABSTRACT

Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependence of the measured strains. This work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...