Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 1): 132016, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697442

ABSTRACT

Silk is a biocompatible and biodegradable material that enables the formation of various morphological forms, including nanospheres. The functionalization of bioengineered silk makes it possible to produce particles with specific properties. In addition to tumor cells, the tumor microenvironment (TME) includes stromal, immune, endothelial cells, signaling molecules, and the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are overexpressed in TME. We investigated bioengineered spider silks functionalized with MMP-responsive peptides to obtain targeted drug release from spheres within TME. Soluble silks MS12.2MS1, MS12.9MS1, and MS22.9MS2 and the corresponding silk spheres carrying MMP-2 or MMP-2/9 responsive peptides were produced, loaded with doxorubicin (Dox), and analyzed for their susceptibility to MMP-2/9 digestion. Although all variants of functionalized silks and spheres were specifically degraded by MMP-2/9, the MS22.9MS2 nanospheres showed the highest levels of degradation and release of Dox after enzyme treatment. Moreover, functionalized spheres were degraded in the presence of cancer cells releasing MMP-2/9. In the 2D and 3D spheroid cancer models, the MMP-2/9-responsive substrate was degraded and released from spheres when loaded into MS22.9MS2 particles but not into the control MS2 spheres. The present study demonstrated that a silk-based MMP-responsive delivery system could be used for controlled drug release within the tumor microenvironment.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Drug Liberation , Matrix Metalloproteinase 2 , Silk , Tumor Microenvironment , Tumor Microenvironment/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Silk/chemistry , Matrix Metalloproteinase 2/metabolism , Delayed-Action Preparations/pharmacology , Matrix Metalloproteinase 9/metabolism , Cell Line, Tumor , Matrix Metalloproteinases/metabolism , Drug Carriers/chemistry , Animals
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542138

ABSTRACT

Photodynamic therapy (PDT) is a selective tumor treatment that consists of a photosensitive compound-a photosensitizer (PS), oxygen, and visible light. Although each component has no cytotoxic properties, their simultaneous use initiates photodynamic reactions (PDRs) and sequentially generates reactive oxygen species (ROS) and/or free radicals as cytotoxic mediators, leading to PDT-induced cell death. Nevertheless, tumor cells develop various cytoprotective mechanisms against PDT, particularly the adaptive mechanism of antioxidant status. This review integrates an in-depth analysis of the cytoprotective mechanism of detoxifying ROS enzymes that interfere with PDT-induced cell death, including superoxide dismutase (SOD), catalase, glutathione redox cycle, and heme oxygenase-1 (HO-1). Furthermore, this review includes the use of antioxidant enzymes inhibitors as a strategy in order to diminish the antioxidant activities of tumor cells and to improve the effectiveness of PDT. Conclusively, PDT is an effective tumor treatment of which its effectiveness can be improved when combined with a specific antioxidant inhibitor.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Treatment Outcome , Cell Line, Tumor
3.
Pharmacol Rep ; 76(2): 424-434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519732

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) can cause right ventricular (RV) failure and subsequent cardiohepatic syndrome referred to as congestive hepatopathy (CH). Passive blood stasis in the liver can affect inflammation, fibrosis, and ultimately cirrhosis. Cannabidiol (CBD) has many beneficial properties including anti-inflammatory and reduces RV systolic pressure and RV hypertrophy in monocrotaline (MCT)-induced PH in rats. Thus, it suggests that CBD may have the potential to limit CH development secondary to RV failure. The present study aimed to determine whether chronic administration of CBD can inhibit the CH secondary to RV hypertrophy associated with MCT-induced PH. METHODS: The experiments involved rats with and without MCT-induced PH. CBD (10 mg/kg) or its vehicle was administered once daily for 3 weeks after MCT injection (60 mg/kg). RESULTS: Monocrotaline administration increased the liver/body weight ratio. In histology examinations, we observed necrosis and vacuolar degeneration of hepatocytes as well as sinusoidal congestion. In biochemical studies, we observed increased levels of nuclear factor-κappa B (NF-κB), tumour necrosis factor-alpha (TNA-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6). CBD administration to PH rats reduced the liver/body weight ratio, improved the architecture of the liver, and inhibited the formation of necrosis. Cannabidiol also decreased the level of NF-κB, TNF-α, IL-1ß and IL-6. CONCLUSIONS: The studies show that CBD can protect the liver from CH probably through attenuating PH, protective effects on the RV, and possibly direct anti-inflammatory effects on liver tissue through regulation of the NF-κB pathway.


Subject(s)
Cannabidiol , Heart Failure , Hypertension, Pulmonary , Rats , Animals , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/prevention & control , Hypertrophy, Right Ventricular/prevention & control , Hypertrophy, Right Ventricular/drug therapy , Cannabidiol/pharmacology , Interleukin-6 , Monocrotaline/toxicity , NF-kappa B , Tumor Necrosis Factor-alpha , Anti-Inflammatory Agents/therapeutic use , Necrosis , Body Weight
SELECTION OF CITATIONS
SEARCH DETAIL