Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Glia ; 72(4): 777-793, 2024 04.
Article in English | MEDLINE | ID: mdl-38189217

ABSTRACT

Astrocytes are highly ramified and send out perivascular processes (PvAPs) that entirely sheathe the brain's blood vessels. PvAPs are equipped with an enriched molecular repertoire that sustains astrocytic regulatory functions at the vascular interface. In the mouse, PvAP development starts after birth and is essentially complete by postnatal day (P) 15. Progressive molecular maturation also occurs over this period, with the acquisition of proteins enriched in PvAPs. The mechanisms controlling the development and molecular maturation of PvAPs have not been extensively characterized. We reported previously that mRNAs are distributed unequally in mature PvAPs and are locally translated. Since dynamic mRNA localization and local translation influence the cell's polarity, we hypothesized that they might sustain the postnatal maturation of PvAPs. Here, we used a combination of molecular biology and imaging approaches to demonstrate that the development of PvAPs is accompanied by the transport of mRNA and polysomal mRNA into PvAPs, the development of a rough endoplasmic reticulum (RER) network and Golgi cisternae, and local translation. By focusing on genes and proteins that are selectively or specifically expressed in astrocytes, we characterized the developmental profile of mRNAs, polysomal mRNAs and proteins in PvAPs from P5 to P60. We found that some polysomal mRNAs polarized progressively towards the PvAPs. Lastly, we found that expression and localization of mRNAs in developing PvAPs is perturbed in a mouse model of megalencephalic leukoencephalopathy with subcortical cysts. Our results indicate that dynamic mRNA localization and local translation influence the postnatal maturation of PvAPs.


Subject(s)
Astrocytes , Mice , Animals , RNA, Messenger/metabolism , Astrocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL