Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0299372, 2024.
Article in English | MEDLINE | ID: mdl-38885237

ABSTRACT

Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 µM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.


Subject(s)
Hydroxybenzoates , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Caco-2 Cells , Cell Line, Tumor , Escherichia coli/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Gallic Acid/chemistry , Gallic Acid/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology
2.
Materials (Basel) ; 15(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36234176

ABSTRACT

Complexes of chlorogenic acid (5-CQA) with copper(II) and iron(III) were synthesized in a solid state and examined by means of FT-IR, thermogravimetric, and elemental analyses. The molar stoichiometric ratios of metal:ligand for the solid forms of the complexes were established as Cu(II):L = 1:2 and Fe(III):L = 2:3 (L: 5-CQA), with the possible coordination through the carboxylate group and the hydroxyl group from the catechol moiety. In an aqueous solution at pH = 7.4, the composition of the complexes was Cu(II):L = 1:1, and Fe(III):L = 1:1 and 1:2. The Cu(II) and Fe(III) complexes with 5-CQA showed lower antioxidant properties, as estimated by the spectrophotometric methods with DPPH•, ABTS•+, and HO• radicals, than the ligand alone, whereas in the lipid peroxidation inhibition assay, the metal complexes revealed a higher antioxidant activity than 5-CQA. Cu(II) 5-CQA showed the highest pro-oxidant activity in the Trolox oxidation assays compared to the other studied compounds. The lipophilic parameters of the compounds were estimated using the HPLC method. 5-CQA and its complexes with Fe(III) and Cu(II) were not toxic to HaCaT cells in a tested concentration range of 0.15-1000 nM after a 24 h incubation time.

SELECTION OF CITATIONS
SEARCH DETAIL
...