Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0283686, 2023.
Article in English | MEDLINE | ID: mdl-36972265

ABSTRACT

While power shortages during and after a natural disaster cause severe impacts on response and recovery activities, related modeling and data collection efforts have been limited. In particular, no methodology exists to analyze long-term power shortages such as those that occurred during the Great East Japan Earthquake. To visualize a risk of supply shortage during a disaster and assist the coherent recovery of supply and demand systems, this study proposes an integrated damage and recovery estimation framework including the power generator, trunk distribution systems (over 154 kV), and power demand system. This framework is unique because it thoroughly investigates the vulnerability and resilience characteristics of power systems as well as businesses as primary power consumers observed in past disasters in Japan. These characteristics are essentially modeled by statistical functions, and a simple power supply-demand matching algorism is implemented using these functions. As a result, the proposed framework reproduces the original power supply and demand status from the 2011 Great East Japan Earthquake in a relatively consistent manner. Using stochastic components of the statistical functions, the average supply margin is estimated to be 4.1%, but the worst-case scenario is a 5.6% shortfall relative to peak demand. Thus, by applying the framework, the study improves knowledge on potential risk by examining a particular past disaster; the findings are expected to enhance risk perception and supply and demand preparedness after a future large-scale earthquake and tsunami disaster.


Subject(s)
Disasters , Earthquakes , Natural Disasters , Tsunamis , Japan
2.
Risk Anal ; 42(9): 1902-1920, 2022 09.
Article in English | MEDLINE | ID: mdl-33331037

ABSTRACT

Systemic risks are characterized by high complexity, multiple uncertainties, major ambiguities, and transgressive effects on other systems outside of the system of origin. Due to these characteristics, systemic risks are overextending established risk management and create new, unsolved challenges for policymaking in risk assessment and risk governance. Their negative effects are often pervasive, impacting fields beyond the obvious primary areas of harm. This article addresses these challenges of systemic risks from different disciplinary and sectorial perspectives. It highlights the special contributions of these perspectives and approaches and provides a synthesis for an interdisciplinary understanding of systemic risks and effective governance. The main argument is that understanding systemic risks and providing good governance advice relies on an approach that integrates novel modeling tools from complexity sciences with empirical data from observations, experiments, or simulations and evidence-based insights about social and cultural response patterns revealed by quantitative (e.g., surveys) or qualitative (e.g., participatory appraisals) investigations. Systemic risks cannot be easily characterized by single numerical estimations but can be assessed by using multiple indicators and including several dynamic gradients that can be aggregated into diverse but coherent scenarios. Lastly, governance of systemic risks requires interdisciplinary and cross-sectoral cooperation, a close monitoring system, and the engagement of scientists, regulators, and stakeholders to be effective as well as socially acceptable.


Subject(s)
Risk Management
SELECTION OF CITATIONS
SEARCH DETAIL
...