Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
Ann Neurol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767023

ABSTRACT

OBJECTIVE: The aim of our study is to better understand the genetic architecture and pathological mechanisms underlying neurodegeneration in idiopathic Parkinson's disease (iPD). We hypothesized that a fraction of iPD patients may harbor a combination of common variants in nuclear-encoded mitochondrial genes ultimately resulting in neurodegeneration. METHODS: We used mitochondria-specific polygenic risk scores (mitoPRSs) and created pathway-specific mitoPRSs using genotype data from different iPD case-control datasets worldwide, including the Luxembourg Parkinson's Study (412 iPD patients and 576 healthy controls) and COURAGE-PD cohorts (7,270 iPD cases and 6,819 healthy controls). Cellular models from individuals stratified according to the most significant mitoPRS were subsequently used to characterize different aspects of mitochondrial function. RESULTS: Common variants in genes regulating Oxidative Phosphorylation (OXPHOS-PRS) were significantly associated with a higher PD risk in independent cohorts (Luxembourg Parkinson's Study odds ratio, OR = 1.31[1.14-1.50], p-value = 5.4e-04; COURAGE-PD OR = 1.23[1.18-1.27], p-value = 1.5e-29). Functional analyses in fibroblasts and induced pluripotent stem cells-derived neuronal progenitors revealed significant differences in mitochondrial respiration between iPD patients with high or low OXPHOS-PRS (p-values < 0.05). Clinically, iPD patients with high OXPHOS-PRS have a significantly earlier age at disease onset compared to low-risk patients (false discovery rate [FDR]-adj p-value = 0.015), similar to prototypic monogenic forms of PD. Finally, iPD patients with high OXPHOS-PRS responded more effectively to treatment with mitochondrially active ursodeoxycholic acid. INTERPRETATION: OXPHOS-PRS may provide a precision medicine tool to stratify iPD patients into a pathogenic subgroup genetically defined by specific mitochondrial impairment, making these individuals eligible for future intelligent clinical trial designs. ANN NEUROL 2024.

2.
Mov Disord ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698639

ABSTRACT

BACKGROUND: Double-blind studies have demonstrated that motor complications in Parkinson's disease (PD) can be reduced with continuous delivery of levodopa. The DopaFuse system is a novel, intraoral micropump that attaches to a retainer and uses a propellant to deliver levodopa/carbidopa (LD/CD) continuously into the mouth. OBJECTIVES: Evaluate the safety, pharmacokinetics, and efficacy of LD/CD delivered via the DopaFuse system compared to treatment with intermittent doses of standard oral LD/CD in PD patients with motor fluctuations. METHODS: This was a 2-week, open-label study (NCT04778176) in 16 PD patients treated with ≥4 levodopa doses/day and experiencing motor fluctuations. On Day 1 (clinic setting) patients received their usual dose of standard LD/CD; DopaFuse therapy was initiated on Day 2, and on Day 3 patients received DopaFuse plus a morning oral LD/CD dose. Patients returned home on Days 4-14 and returned for in-clinic assessment on Day 15. RESULTS: Continuous DopaFuse delivery of LD/CD was associated with reduced variability in plasma levodopa levels compared to oral LD/CD (mean ± SD levodopa Fluctuation Index reduced from 2.15 ± 0.59 on Day1 to 1.50 ± 0.55 on Day 2 (P = 0.0129) and to 1.03 ± 0.53 on Day 3 (P < 0.0001)). This pharmacokinetic improvement translated into significantly reduced OFF time with DopaFuse therapy (reduction of -1.72 ± 0.37 h at Day 15; P = 0.0004) and increased ON time without severe dyskinesias (increase of 1.72 ± 0.37 h at Day 15; P = 0.0004) versus oral LD/CD administration. DopaFuse therapy was not associated with any clinically significant adverse events. CONCLUSIONS: Continuous delivery of LD/CD using the DopaFuse system was associated with significantly less variability in plasma levodopa concentrations and reductions in OFF time compared to treatment with standard oral LD/CD therapy and was well tolerated. © 2024 International Parkinson and Movement Disorder Society.

3.
NPJ Parkinsons Dis ; 10(1): 78, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582855

ABSTRACT

Gut microbiome differences between people with Parkinson's disease (PD) and control subjects without Parkinsonism are widely reported, but potential alterations related to PD with mild cognitive impairment (MCI) have yet to be comprehensively explored. We compared gut microbial features of PD with MCI (n = 58) to cognitively unimpaired PD (n = 60) and control subjects (n = 90) with normal cognition. Our results did not support a specific microbiome signature related to MCI in PD.

4.
Sensors (Basel) ; 24(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38610406

ABSTRACT

Wearable sensors could be beneficial for the continuous quantification of upper limb motor symptoms in people with Parkinson's disease (PD). This work evaluates the use of two inertial measurement units combined with supervised machine learning models to classify and predict a subset of MDS-UPDRS III subitems in PD. We attached the two compact wearable sensors on the dorsal part of each hand of 33 people with PD and 12 controls. Each participant performed six clinical movement tasks in parallel with an assessment of the MDS-UPDRS III. Random forest (RF) models were trained on the sensor data and motor scores. An overall accuracy of 94% was achieved in classifying the movement tasks. When employed for classifying the motor scores, the averaged area under the receiver operating characteristic values ranged from 68% to 92%. Motor scores were additionally predicted using an RF regression model. In a comparative analysis, trained support vector machine models outperformed the RF models for specific tasks. Furthermore, our results surpass the literature in certain cases. The methods developed in this work serve as a base for future studies, where home-based assessments of pharmacological effects on motor function could complement regular clinical assessments.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Machine Learning , Movement , Supervised Machine Learning , Hand
5.
J Parkinsons Dis ; 14(3): 545-556, 2024.
Article in English | MEDLINE | ID: mdl-38669560

ABSTRACT

Background: REM-sleep behavior disorder (RBD) and other non-motor symptoms such as hyposmia were proposed by the Movement Disorder Society as research criteria for prodromal Parkinson's disease (P-PD). Global cognitive deficit was later added. Objective: To compare non-motor symptoms, focusing on cognition, between a P-PD group and a matched control group. Methods: In this cross-sectional, case-control study, in a first set of analyses, we performed extensive cognitive testing on people with (n = 76) and a control group without (n = 195) probable RBD and hyposmia. Furthermore, we assessed motor and non-motor symptoms related to Parkinson's Disease (PD). After propensity score matching, we compared 62 P-PD with 62 age- and sex-matched controls. In addition, we performed regression analyses on the total sample (n = 271). In a second set of analyses, we used, a.o., the CUPRO to evaluate retrograde procedural memory and visuo-constructive functions. Results: People with P-PD showed significantly poorer performances in global cognition, visuo-constructive and executive functions, mainly in mental flexibility (p < 0.001; p = 0.004; p = 0.003), despite similar educational levels (p = 0.415). We observed significantly more motor and non-motor symptoms (p < 0.001; p = 0.004), higher scores for depression (p = 0.004) and apathy (p < 0.001) as well as lower quality of life (p < 0.001) in P-PD. CONCLUSIONS: Our findings confirm that global cognitive, executive, and visuo-constructive deficits define the P-PD group. In addition, depression, apathy, and lower quality of life were more prevalent in P-PD. If replicated in other samples, executive and visuo-constructive deficits should be considered in non-motor P-PD. Determining specific patterns will support early recognition of PD, secondary prevention of complications and the development of neuroprotective treatments.


Subject(s)
Anosmia , Cognitive Dysfunction , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Parkinson Disease/physiopathology , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/physiopathology , Male , Female , Aged , Middle Aged , Cross-Sectional Studies , Case-Control Studies , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Anosmia/etiology , Anosmia/physiopathology , Prodromal Symptoms , Executive Function/physiology , Neuropsychological Tests , Cognition/physiology
6.
Mov Disord ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586902

ABSTRACT

BACKGROUND: Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research. OBJECTIVE: The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family. METHODS: Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment. RESULTS: We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved Deutsche Forschungsgemeinschaft (DFG) motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization. CONCLUSIONS: We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

7.
NPJ Parkinsons Dis ; 10(1): 68, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503737

ABSTRACT

Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.

8.
BMC Infect Dis ; 24(1): 179, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336649

ABSTRACT

BACKGROUND: During the COVID-19 pandemic swift implementation of research cohorts was key. While many studies focused exclusively on infected individuals, population based cohorts are essential for the follow-up of SARS-CoV-2 impact on public health. Here we present the CON-VINCE cohort, estimate the point and period prevalence of the SARS-CoV-2 infection, reflect on the spread within the Luxembourgish population, examine immune responses to SARS-CoV-2 infection and vaccination, and ascertain the impact of the pandemic on population psychological wellbeing at a nationwide level. METHODS: A representative sample of the adult Luxembourgish population was enrolled. The cohort was followed-up for twelve months. SARS-CoV-2 RT-qPCR and serology were conducted at each sampling visit. The surveys included detailed epidemiological, clinical, socio-economic, and psychological data. RESULTS: One thousand eight hundred sixty-five individuals were followed over seven visits (April 2020-June 2021) with the final weighted period prevalence of SARS-CoV-2 infection of 15%. The participants had similar risks of being infected regardless of their gender, age, employment status and education level. Vaccination increased the chances of IgG-S positivity in infected individuals. Depression, anxiety, loneliness and stress levels increased at a point of study when there were strict containment measures, returning to baseline afterwards. CONCLUSION: The data collected in CON-VINCE study allowed obtaining insights into the infection spread in Luxembourg, immunity build-up and the impact of the pandemic on psychological wellbeing of the population. Moreover, the study holds great translational potential, as samples stored at the biobank, together with self-reported questionnaire information, can be exploited in further research. TRIAL REGISTRATION: Trial registration number: NCT04379297, 10 April 2020.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Luxembourg/epidemiology , Anxiety/epidemiology
9.
Mol Cell Neurosci ; 128: 103919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307302

ABSTRACT

Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Astrocytes/metabolism , Neurodegenerative Diseases/metabolism , Mesencephalon/metabolism , Mesencephalon/pathology , Dopaminergic Neurons/metabolism , Organoids/metabolism , Organoids/pathology , Substantia Nigra/metabolism
10.
EMBO Rep ; 25(1): 254-285, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177910

ABSTRACT

Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.


Subject(s)
Dopaminergic Neurons , Induced Pluripotent Stem Cells , Humans , Dopaminergic Neurons/metabolism , Multiomics , Mesencephalon , Transcription Factors/genetics , Transcription Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics
11.
J Alzheimers Dis ; 97(2): 791-804, 2024.
Article in English | MEDLINE | ID: mdl-38189752

ABSTRACT

BACKGROUND: With continuously aging societies, an increase in the number of people with cognitive decline is to be expected. Aside from the development of causative treatments, the successful implementation of prevention strategies is of utmost importance to reduce the high societal burden caused by neurodegenerative diseases leading to dementia among which the most common cause is Alzheimer's disease. OBJECTIVE: The aim of the Luxembourgish "programme dementia prevention (pdp)" is to prevent or at least delay dementia in an at-risk population through personalized multi-domain lifestyle interventions. The current work aims to provide a detailed overview of the methodology and presents initial results regarding the cohort characteristics and the implementation process. METHODS: In the frame of the pdp, an extensive neuropsychological evaluation and risk factor assessment are conducted for each participant. Based on the results, individualized multi-domain lifestyle interventions are suggested. RESULTS: A total number of 450 participants (Mean age = 69.5 years; SD = 10.8) have been screened at different recruitment sites throughout the country, among whom 425 participants (94.4%) met the selection criteria. CONCLUSIONS: We provide evidence supporting the feasibility of implementing a nationwide dementia prevention program and achieving successful recruitment of the target population by establishing a network of different healthcare providers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Luxembourg/epidemiology , Cognitive Dysfunction/therapy , Alzheimer Disease/epidemiology , Alzheimer Disease/prevention & control , Life Style , Patient Selection
12.
Gait Posture ; 108: 97-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029483

ABSTRACT

BACKGROUND: Information on determinants of patient-reported functional mobility is lacking but would inform the planning of healthcare, resources and strategies to promote functional mobility in people with Parkinson's disease (PD). RESEARCH QUESTION: To identify the determinants of patient-reported functional mobility of people with PD. METHODS: Eligible: Randomized Controlled Trials, cohort, case-control, or cross-sectional analyses in people PD without date or setting restrictions, published in English, German, or French. Excluded: instruments with under 50 % of items measuring mobility. On August 9th 2023 we last searched Medline, CINAHL and PsychInfo. We assessed risk of bias using the mixed-methods appraisal tool. Results were synthesized by tabulating the determinants by outcomes and study designs. RESULTS: Eleven studies published 2012-2023 were included (most in Swedish outpatient settings). Samples ranged from 9 to 255 participants. Follow-up varied from 1.5 to 36 months with attrition of 15-42 %. Heterogenic study designs complicated results synthesis. However, determinants related to environment seem to associate the strongest with patient-reported functional mobility, although determinants related to body structures and functions were most investigated. We identified disease duration, the ability to drive, caregiving, sex, age, cognitive impairment, postural instability and social participation as determinants of patient-reported functional mobility. DISCUSSION: Methodological quality of the studies was limited. No study reported an a priori power calculation. Three studies controlled for confounders. The included studies lack representativeness of the population of people living with PD. Standardized sets of outcomes could enable more systematic research synthesis. CONCLUSIONS: Future research should focus on activities, participation and environmental factors and improve methodological quality.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/psychology , Cross-Sectional Studies , Delivery of Health Care , Patient Reported Outcome Measures
14.
NPJ Parkinsons Dis ; 9(1): 166, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110400

ABSTRACT

The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.

15.
Nat Commun ; 14(1): 7461, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985656

ABSTRACT

Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.


Subject(s)
Parkinson Disease , Humans , Female , Parkinson Disease/genetics , CD8-Positive T-Lymphocytes , Cell Differentiation , Immunologic Memory
16.
NPJ Parkinsons Dis ; 9(1): 156, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996455

ABSTRACT

Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.

17.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834413

ABSTRACT

SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron BA.1, BA.2, and BA.5. Analytical performances were compared against the respective VOC to the reference virus neutralization test (VNT) and two CE-IVD labeled kits using three different cohorts collected during the COVID-19 waves. Correlation analyses showed moderate to strong correlation for Omicron sub-variants (Spearman's r = 0.7081 for BA.1, r = 0.7205 for BA.2, and r = 0.6042 for BA.5), and for WT (r = 0.8458) and Delta-sVNT (r = 0.8158), respectively. Comparison of the WT-sVNT performance with two CE-IVD kits, the "Icosagen SARS-CoV-2 Neutralizing Antibody ELISA kit" and the "Genscript cPass, kit" revealed an overall good correlation ranging from 0.8673 to -0.8773 and a midway profile between both commercial kits with 87.76% sensitivity and 90.48% clinical specificity. The BA.2-sVNT performance was similar to the BA.2 Genscript test. Finally, a correlation analysis revealed a strong association (r = 0.8583) between BA.5-sVNT and VNT sVNT using a double-vaccinated cohort (n = 100) and an Omicron-breakthrough infection cohort (n = 91). In conclusion, the sVNT allows for the efficient prediction of immune protection against the various VOCs.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Neutralization Tests , SARS-CoV-2 , Breakthrough Infections , Antibodies, Viral
18.
medRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37790572

ABSTRACT

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives: To investigate the effects of genetic variants on risk and time to LID. Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.

19.
Stem Cell Res ; 72: 103212, 2023 10.
Article in English | MEDLINE | ID: mdl-37832355

ABSTRACT

We describe an induced pluripotent stem cell (iPSC) line that was derived from fibroblasts obtained from a Parkinson's disease (PD) patient carrying the p.G2019S mutation in the LRRK2 gene and the p.N409S mutation in the GBA1 gene. iPSCs were generated via Sendai virus transduction of Yamanaka factors. The presence of GBA1 p.N409S and LRRK2 p.G2019S was confirmed by Sanger sequencing. The iPSCs express pluripotency markers, are capable of in vitro differentiation into the three germ layers and have a normal karyotype. The newly generated line will be used for in vitro PD modeling by investigating the role of each mutation in iPSC-derived dopaminergic neurons.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Mutation/genetics , Fibroblasts/metabolism , Dopaminergic Neurons/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics
20.
Biol Proced Online ; 25(1): 26, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730545

ABSTRACT

BACKGROUND: Astrocytes have recently gained attention as key contributors to the pathogenesis of neurodegenerative disorders including Parkinson's disease. To investigate human astrocytes in vitro, numerous differentiation protocols have been developed. However, the properties of the resulting glia are inconsistent, which complicates the selection of an appropriate method for a given research question. Thus, we compared two approaches for the generation of iPSC-derived astrocytes. We phenotyped glia that were obtained employing a widely used long, serum-free ("LSF") method against an in-house established short, serum-containing ("SSC") protocol which allows for the generation of astrocytes and midbrain neurons from the same precursor cells. RESULTS: We employed high-content confocal imaging and RNA sequencing to characterize the cultures. The astrocytes generated with the LSF or SSC protocols differed considerably in their properties: while the former cells were more labor-intense in their generation (5 vs 2 months), they were also more mature. This notion was strengthened by data resulting from cell type deconvolution analysis that was applied to bulk transcriptomes from the cultures to assess their similarity with human postmortem astrocytes. CONCLUSIONS: Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol, when designing functional or drug discovery studies involving iPSC-derived astrocytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...