Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862481

ABSTRACT

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Dyrk Kinases , Fungal Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Animals , Antifungal Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Mice , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Azoles/pharmacology , Aspergillosis/microbiology , Aspergillosis/drug therapy , Lung/microbiology , Spores, Fungal/drug effects , Spores, Fungal/genetics , Female
2.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38388771

ABSTRACT

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Subject(s)
Fungal Proteins , Mycotoxins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candida albicans/metabolism , Mycotoxins/metabolism , Peptides/pharmacology , Peptides/metabolism
4.
Int Orthop ; 48(1): 229-234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37606768

ABSTRACT

PURPOSE: Calcar-guided short-stem total hip arthroplasty (THA) has shown excellent clinical outcomes. However, the migration pattern of such prostheses and its effect on clinical outcomes are less known. Therefore, we assessed the five-year subsidence after calcar-guided short-stem THA and its implications on clinical outcomes, patient-related factors, and complications. METHODS: In this prospective multicentre study, we enrolled 213 patients (224 hips) who underwent calcar-guided short-stem THA mostly for degenerative hip diseases. We examined patients radiographically and clinically after six to 12 weeks, one year, two years, and five years. We evaluated subsidence using Einzel-Bild-Roentgen-Analyse femoral component analysis, assessed clinical outcomes, and systematically recorded all complications. RESULTS: Overall, 131 patients (133 hips) were available for final follow-up at a median of 60 months (range, 2 to 72 months). We found a mean subsidence of 0.63 ± 1.22 mm at three months, 1.03 ± 1.60 mm at one year, 1.21 ± 1.91 mm at two years, and 1.54 ± 1.97 mm at five years. Patient-related factors (sex, age, weight, and BMI) did not significantly impact subsidence at five years (P > 0.05). Additionally, the Harris hip score, pain, and satisfaction improved significantly at five years compared to pre-operative values (P < 0.0001). Lastly, five patients underwent revision. CONCLUSION: Calcar-guided short-stems revealed the highest subsidence rate within the first three months after THA and stabilisation after one year through the final follow-up examination. Moreover, patient-related factors had no influence on subsidence. Finally, clinical scores and patient satisfaction remained high at five years.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Child, Preschool , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Hip Prosthesis/adverse effects , Prospective Studies , Treatment Outcome , Prosthesis Design , Follow-Up Studies , Retrospective Studies
5.
mSphere ; 8(6): e0054623, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38010000

ABSTRACT

IMPORTANCE: The SNF1 protein kinase signaling pathway, which is highly conserved in eukaryotic cells, is important for metabolic adaptations in the pathogenic yeast Candida albicans. However, so far, it has remained elusive how SNF1 controls the activity of one of its main effectors, the repressor protein Mig1 that inhibits the expression of genes required for the utilization of alternative carbon sources when glucose is available. In this study, we have identified multiple phosphorylation sites in Mig1 that contribute to its inactivation. Mutation of these sites strongly increased Mig1 repressor activity in the absence of SNF1, but SNF1 could still sufficiently inhibit the hyperactive Mig1 to enable growth on alternative carbon sources. These findings reveal features of Mig1 that are important for controlling its repressor activity. Furthermore, they demonstrate that both SNF1 and additional protein kinases regulate Mig1 in this pathogenic yeast.


Subject(s)
Candida albicans , Saccharomyces cerevisiae Proteins , Candida albicans/genetics , Candida albicans/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Carbon/metabolism
6.
Res Sq ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37790311

ABSTRACT

Aspergillus fumigatus, an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores (conidia) for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, and the cryptic pathogen Aspergillus lentulus. After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding conidial proteins. Deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.

7.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662192

ABSTRACT

Aspergillus fumigatus , an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores or conidia for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus , two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis , and the cryptic pathogen Aspergillus lentulus . After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we deleted 42 genes encoding conidial proteins. We found deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.

8.
J Orthop ; 43: 93-100, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37575949

ABSTRACT

Background: Metaphyseal fixation of short stem THA allows for minimally invasive surgery, less bone removal, improved bone load transfer and reduced stress shielding. Short stems facilitate the anatomic restoration i.a. of leg length, femoroacetabular offset, and center of rotation. However, metaphyseal fixation might cause impaired primary and/or secondary stability resulting in an inherent tendency for early axial migration and aseptic loosening eventually. The objective of this study was to investigate the long-term outcome and migration pattern of a calcar-guided short stem. Methods: In a prospective multicenter study, 213 patients (224 THAs) were enrolled. Patients were followed for up to 84 months postoperatively. Clinical outcome was assessed using the Harris Hip Score and the VAS for pain and satisfaction. Standardized and calibrated radiographs were screened i.a. for stress shielding and loosening. Einzel-Bild-Roentgen-Analyse - femoral component analysis (EBRA-FCA) was used to detect longitudinal subsidence. Results: At 7 year follow-up, n = 139/224 cases were available for analysis. All clinical parameters improved significantly (p < 0.001) and improvement persisted. There were no radiographic changes indicating stress shielding. EBRA-FCA revealed a mean subsidence of -1.44 mm followed by a stabilization. Weight >80 kg (p = 0.115), BMI <30 kg/m2 (p = 0.282), male gender (p = 0.246), and age <65 years (p = 0.304) seemed to be associated with a higher risk for migration. The cumulative revision rate was 2.23%. Revisions due to stem migration (0.89%) occurred early (mean time between index surgery and revision: 3.3 months). Conclusions: If at all, there appears to be a pronounced initial subsidence, which stabilizes thereafter. Stem migration was rarely a compelling reason for failure or revision. Demographics do not seem to have a significant effect on migration pattern. The absence of radioluce lines, resorption or hypertrophy of the proximal femora support the hypothesis of a reduced stress shielding for metaphyseal anchoring short stems.

9.
Res Sq ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398159

ABSTRACT

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance. As part of the A. fumigatus genome-wide knockout program (COFUN), we have completed the generation of a library that consists of 120 genetically barcoded null mutants in genes that encode the protein kinase cohort of A. fumigatus. We have employed a competitive fitness profiling approach (Bar-Seq), to identify targets which when deleted result in hypersensitivity to the azoles and fitness defects in a murine host. The most promising candidate from our screen is a previously uncharacterised DYRK kinase orthologous to Yak1 of Candida albicans, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. Here we show that the orthologue YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress via phosphorylation of the Woronin body tethering protein Lah. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and impacts growth in murine lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit Yak1 in C. albicans prevents stress mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.

10.
mBio ; 14(4): e0078723, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37486262

ABSTRACT

The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.


Subject(s)
Agaricus , Oxalobacteraceae , Bacterial Secretion Systems , Agaricus/genetics , Fungi , Bacteria
11.
Nat Microbiol ; 8(7): 1348-1361, 2023 07.
Article in English | MEDLINE | ID: mdl-37322111

ABSTRACT

Although the interaction between prokaryotic and eukaryotic microorganisms is crucial for the functioning of ecosystems, information about the processes driving microbial interactions within communities remains scarce. Here we show that arginine-derived polyketides (arginoketides) produced by Streptomyces species mediate cross-kingdom microbial interactions with fungi of the genera Aspergillus and Penicillium, and trigger the production of natural products. Arginoketides can be cyclic or linear, and a prominent example is azalomycin F produced by Streptomyces iranensis, which induces the cryptic orsellinic acid gene cluster in Aspergillus nidulans. Bacteria that synthesize arginoketides and fungi that decode and respond to this signal were co-isolated from the same soil sample. Genome analyses and a literature search indicate that arginoketide producers are found worldwide. Because, in addition to their direct impact, arginoketides induce a secondary wave of fungal natural products, they probably contribute to the wider structure and functioning of entire soil microbial communities.


Subject(s)
Aspergillus nidulans , Biological Products , Polyketides , Streptomyces , Ecosystem , Soil , Streptomyces/genetics , Aspergillus nidulans/genetics
12.
RNA ; 29(7): 1033-1050, 2023 07.
Article in English | MEDLINE | ID: mdl-37019633

ABSTRACT

The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.


Subject(s)
Aspergillus fumigatus , Transcriptome , Aspergillus fumigatus/genetics , RNA Interference , Spores, Fungal/genetics , RNA, Double-Stranded
13.
mBio ; 14(2): e0010723, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36856418

ABSTRACT

Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.


Subject(s)
Candidiasis, Vulvovaginal , Female , Humans , Candidiasis, Vulvovaginal/microbiology , Candida/genetics , Multilocus Sequence Typing , Quality of Life , Candida albicans , Antifungal Agents/pharmacology , Phenotype , Cell Communication
14.
J Proteomics ; 279: 104886, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36966971

ABSTRACT

Proximity biotinylation screens are a widely used strategy for the unbiased identification of interacting or vicinal proteins. The latest generation biotin ligase TurboID has broadened the range of potential applications, as this ligase promotes an intense and faster biotinylation, even in subcellular compartments like the endoplasmic reticulum. On the other hand, the uncontrollable high basal biotinylation rates deny the system's inducibility and are often associated with cellular toxicity precluding its use in proteomics. We report here an improved method for TurboID-dependent biotinylation reactions based on the tight control of free biotin levels. Blockage of free biotin with a commercial biotin scavenger reversed the high basal biotinylation and toxicity of TurboID, as shown by pulse-chase experiments. Accordingly, the biotin-blockage protocol restored the biological activity of a bait protein fused to TurboID in the endoplasmic reticulum and rendered the biotinylation reaction inducible by exogenous biotin. Importantly, the biotin-blockage protocol was more effective than biotin removal with immobilized avidin and did not affect the cellular viability of human monocytes over several days. The method presented should be useful to researchers interested in exploiting the full potential of biotinylation screens with TurboID and other high-activity ligases for challenging proteomics questions. SIGNIFICANCE: Proximity biotinylation screens using the last generation biotin ligase TurboID represent a powerful approach for the characterisation of transient protein-protein interaction and signaling networks. However, a constant and high basal biotinylation rate and the associated cytotoxicity often preclude the use of this method in proteomic studies. We report a protocol based on modulation of free biotin levels that prevents the deleterious effects of TurboID while allowing inducible biotinylation, even in subcellular compartments such as the endoplasmic reticulum. This optimised protocol greatly expands the applications of TurboID in proteomic screens.


Subject(s)
Biotin , Proteomics , Humans , Biotinylation , Proteomics/methods , Proteins , Ligases
15.
Cell Host Microbe ; 31(3): 373-388.e10, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36893734

ABSTRACT

The decision whether endosomes enter the degradative or recycling pathway in mammalian cells is of fundamental importance for pathogen killing, and its malfunctioning has pathological consequences. We discovered that human p11 is a critical factor for this decision. The HscA protein present on the conidial surface of the human-pathogenic fungus Aspergillus fumigatus anchors p11 on conidia-containing phagosomes (PSs), excludes the PS maturation mediator Rab7, and triggers binding of exocytosis mediators Rab11 and Sec15. This reprogramming redirects PSs to the non-degradative pathway, allowing A. fumigatus to escape cells by outgrowth and expulsion as well as transfer of conidia between cells. The clinical relevance is supported by the identification of a single nucleotide polymorphism in the non-coding region of the S100A10 (p11) gene that affects mRNA and protein expression in response to A. fumigatus and is associated with protection against invasive pulmonary aspergillosis. These findings reveal the role of p11 in mediating fungal PS evasion.


Subject(s)
Aspergillus fumigatus , Phagosomes , Animals , Humans , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Endosomes , Spores, Fungal , Mammals
16.
Cells ; 11(19)2022 09 22.
Article in English | MEDLINE | ID: mdl-36230919

ABSTRACT

Cell wall integrity (CWI) maintenance is central for plant cells. Mechanical and chemical distortions, pH changes, and breakdown products of cell wall polysaccharides activate plasma membrane-localized receptors and induce appropriate downstream responses. Microbial interactions alter or destroy the structure of the plant cell wall, connecting CWI maintenance to immune responses. Cellulose is the major polysaccharide in the primary and secondary cell wall. Its breakdown generates short-chain cellooligomers that induce Ca2+-dependent CWI responses. We show that these responses require the malectin domain-containing CELLOOLIGOMER-RECEPTOR KINASE 1 (CORK1) in Arabidopsis and are preferentially activated by cellotriose (CT). CORK1 is required for cellooligomer-induced cytoplasmic Ca2+ elevation, reactive oxygen species (ROS) production, mitogen-associated protein kinase (MAPK) activation, cellulose synthase phosphorylation, and the regulation of CWI-related genes, including those involved in biosynthesis of cell wall material, secondary metabolites and tryptophan. Phosphoproteome analyses identified early targets involved in signaling, cellulose synthesis, the endoplasmic reticulum/Golgi secretory pathway, cell wall repair and immune responses. Two conserved phenylalanine residues in the malectin domain are crucial for CORK1 function. We propose that CORK1 is required for CWI and immune responses activated by cellulose breakdown products.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Cellulose/metabolism , Mitogens/metabolism , Phenylalanine/metabolism , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Tryptophan/metabolism
17.
NPJ Biofilms Microbiomes ; 8(1): 78, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36224215

ABSTRACT

Candida albicans biofilm maturation is accompanied by enhanced expression of amino acid acquisition genes. Three state-of-the-art omics techniques were applied to detail the importance of active amino acid uptake during biofilm development. Comparative analyses of normoxic wild-type biofilms were performed under three metabolically challenging conditions: aging, hypoxia, and disabled amino acid uptake using a strain lacking the regulator of amino acid permeases Stp2. Aging-induced amino acid acquisition and stress responses to withstand the increasingly restricted environment. Hypoxia paralyzed overall energy metabolism with delayed amino acid consumption, but following prolonged adaptation, the metabolic fingerprints aligned with aged normoxic biofilms. The extracellular metabolome of stp2Δ biofilms revealed deficient uptake for 11 amino acids, resulting in extensive transcriptional and metabolic changes including induction of amino acid biosynthesis and carbohydrate and micronutrient uptake. Altogether, this study underscores the critical importance of a balanced amino acid homeostasis for C. albicans biofilm development.


Subject(s)
Candida albicans , Fungal Proteins , Amino Acids/metabolism , Biofilms , Candida albicans/genetics , Carbohydrates , Fungal Proteins/genetics , Hypoxia , Micronutrients/metabolism
18.
Front Immunol ; 13: 1005554, 2022.
Article in English | MEDLINE | ID: mdl-36311725

ABSTRACT

Functional impairment of the bone marrow (BM) niche has been suggested as a major reason for prolonged cytopenia and secondary graft failure after allogeneic hematopoietic cell transplantation (alloHCT). Because mesenchymal stromal cells (MSCs) serve as multipotent progenitors for several niche components in the BM, they might play a key role in this process. We used collagenase digested trephine biopsies to directly quantify MSCs in 73 patients before (n = 18) and/or after alloHCT (n = 65). For the first time, we demonstrate that acute graft-versus-host disease (aGvHD, n = 39) is associated with a significant decrease in MSC numbers. MSC reduction can be observed even before the clinical onset of aGvHD (n = 10). Assessing MSCs instantly after biopsy collection revealed phenotypic and functional differences depending on the occurrence of aGvHD. These differences vanished during ex vivo expansion. The MSC endotypes observed revealed an enhanced population of donor-derived classical dendritic cells type 1 and alloreactive T cells as the causing agent for compartmental inflammation and MSC damage before clinical onset of aGvHD was ascertained. In conclusion, MSCs endotypes may constitute a predisposing conductor of alloreactivity after alloHCT preceding the clinical diagnosis of aGvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Graft vs Host Disease/diagnosis , Bone Marrow/pathology , Mesenchymal Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/metabolism
19.
Genes (Basel) ; 13(9)2022 09 11.
Article in English | MEDLINE | ID: mdl-36140799

ABSTRACT

Three strains of the Aspergillus versicolor complex were isolated from a salty marsh at a former uranium mining site in Thuringia, Germany. The strains from a metal-rich environment were not only highly salt tolerant (up to 20% NaCl), but at the same time could sustain elevated Cs and Sr (both up to 100 mM) concentrations as well as other (heavy) metals present in the environment. During growth experiments when screening for differential cell morphology, the occurrence of guttation droplets was observed, specifically when elevated Sr concentrations of 25 mM were present in the media. To analyze the potential of metal tolerance being promoted by these excretions, proteomics and metabolomics of guttation droplets were performed. Indeed, proteins involved in up-regulated metabolic activities as well as in stress responses were identified. The metabolome verified the presence of amino sugars, glucose homeostasis-regulating substances, abscisic acid and bioactive alkaloids, flavones and quinones.


Subject(s)
Flavones , Uranium , Abscisic Acid , Amino Sugars , Aspergillus , Glucose , Quinones , Sodium Chloride
20.
Angew Chem Int Ed Engl ; 61(41): e202209105, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35901418

ABSTRACT

The choanoflagellate Salpingoeca rosetta is an important model system to study the evolution of multicellularity. In this study we developed a new, modular, and scalable synthesis of sulfonolipid IOR-1A (six steps, 27 % overall yield), which acts as bacterial inhibitor of rosette formation in S. rosetta. The synthesis features a decarboxylative cross-coupling reaction of a sulfonic acid-containing tartaric acid derivative with alkyl zinc reagents. Synthesis of 15 modified IOR-1A derivatives, including fluorescent and photoaffinity-based probes, allowed quantification of IOR-1A, localization studies within S. rosetta cells, and evaluation of structure-activity relations. In a proof of concept study, an inhibitory bifunctional probe was employed in proteomic profiling studies, which allowed to deduce binding partners in bacteria and S. rosetta. These results showcase the power of synthetic chemistry to decipher the biochemical basis of cell differentiation processes within S. rosetta.


Subject(s)
Choanoflagellata , Cell Differentiation , Lipids , Proteomics , Sulfonic Acids , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...