Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 45498-45505, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37704020

ABSTRACT

Droplet-based microfluidics is leading the development of miniaturized, rapid, and sensitive version of enzyme-linked immunosorbent assays (ELISAs), a central method for protein detection. These assays involve the use of a functionalized surface able to selectively capture the desired analyte. Using the droplet's oil water interface as a capture surface requires designing custom-perfluorinated fluorosurfactants bearing azide-containing polar groups, which spontaneously react when forming the droplet with strain-alkyne-functionalized antibodies solubilized in the aqueous phase. In this article, we present our research on the influence of the structure of surfactant's hydrophilic heads on the efficiency of SPAAC functionalization and on the effect of this antibody grafting process on droplet stability. We have shown that while short linkers lead to high grafting efficiency, long linkers lead to high stability, and that an intermediate size is required to balance both parameters. In the described family of surfactants, the optimal structure proved to be a PEG4 linker connecting a polar di-azide head and a per-fluoropolyether tail (Krytox). We also found that grafting an increasing amount of antibody, thus increasing interface coverage, increases droplet stability. It thus appears that such a bi-partite system with a reactive fluoro-surfactant in the oil phase and reactive antibody counterpart in the aqueous phase gives access in situ to novel surfactant construct providing unexplored interface structures and droplet functionality.


Subject(s)
Microfluidics , Water , Water/chemistry , Azides/chemistry , Surface-Active Agents/chemistry , Antibodies
2.
Sci Rep ; 13(1): 13693, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608058

ABSTRACT

Microbubbles have potential applications as drug and gene carriers, and drug release can be triggered by externally applied ultrasound irradiation while inside blood vessels. Desorption of molecules forming the microbubble shell can be observed under ultrasound irradiation of a single isolated microbubble, and the volume of desorbed molecules can be quantitatively estimated from the contact angle between the bubble and a glass plate. Microbubbles composed of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) shell and a poorly-soluble gas are created. When the microbubbles are exposed to a pulsed ultrasound, the contact angles increase dramatically; the percentage of DMPC molecules desorbed from the bubble surface reaches 70%. Vibration of a single bubble in the radial direction is measured using a laser Doppler vibrometer. The relationship between the vibrational characteristics and the amount of molecular desorption reveals that a larger vibrational amplitude of the bubble around the resonance size induces a larger amount of molecular desorption. These results support the possibility of controlling molecular desorption with pulsed ultrasound.

3.
Sci Rep ; 13(1): 12377, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524759

ABSTRACT

Under non-equilibrium conditions, liquid droplets dynamically couple with their milieu through the continuous flux of matter and energy, forming active systems capable of self-organizing functions reminiscent of those of living organisms. Among the various dynamic behaviors demonstrated by cells, the pairing of heterogeneous cell units is necessary to enable collective activity and cell fusion (to reprogram somatic cells). Furthermore, the cyclic occurrence of eruptive events such as necroptosis or explosive cell lysis is necessary to maintain cell functions. However, unlike the self-propulsion behavior of cells, cyclic cellular behavior involving pairing and eruption has not been successfully modeled using artificial systems. Here, we show that a simple droplet system based on quasi-immiscible hydrophobic oils (perfluorodecalin and decane) deposited on water, mimics such complex cellular dynamics. Perfluorodecalin and decane droplet duos form autonomously moving Janus or coaxial structures, depending on their volumes. Notably, the system with a coaxial structure demonstrates cyclic behavior, alternating between autonomous motion and eruption. Despite their complexity, the dynamic behaviors of the system are consistently explained in terms of the spreading properties of perfluorodecalin/decane duplex interfacial films.


Subject(s)
Fluorocarbons , Water , Water/chemistry , Motion
4.
Angew Chem Int Ed Engl ; 62(37): e202302942, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37208990

ABSTRACT

Polyhedral molecules are appealing for their eye-catching architecture and distinctive chemistry. Perfluorination of such, often greatly strained, compounds is a momentous challenge. It drastically changes the electron distribution, structure and properties. Notably, small high-symmetry perfluoropolyhedranes feature a centrally located, star-shaped low-energy unoccupied molecular orbital that can host an extra electron within the polyhedral frame, thus producing a radical anion, without loss of symmetry. This predicted electron-hosting capacity was definitively established for perfluorocubane, the first perfluorinated Platonic polyhedrane to be isolated pure. Hosting atoms, molecules, or ions in such "cage" structures is, however, all but forthright, if not illusionary, offering no easy access to supramolecular constructs. While adamantane and cubane have fostered numerous applications in materials science, medicine, and biology, specific uses for their perfluorinated counterparts remain to be established. Some aspects of highly fluorinated carbon allotropes, such as fullerenes and graphite, are briefly mentioned for context.

5.
Langmuir ; 39(1): 433-441, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36580034

ABSTRACT

The oscillation of shelled microbubbles during exposure to ultrasound is influenced by the mechanical properties of the shell components. The oscillation behavior of bubbles coated with various phospholipids and other amphiphiles has been studied. However, there have been few investigations of how the adsorption conditions of the shell molecules relate to the viscoelastic properties of the shell and influence the oscillation behavior of the bubbles. In the present study, we investigated the oscillation characteristics of microbubbles coated with a poloxamer surfactant, that is, Pluronic F-68, at several concentrations after the adsorption kinetics of the surfactant at the gas-water interface had reached equilibrium. The dilatational viscoelasticity of the shell during exposure to ultrasound was analyzed in the frequency domain from the attenuation characteristics of the acoustic pulses propagated in the bubble suspension. At Pluronic F-68 concentrations lower than 2.0 × 10-2 mol L-1, the attenuation characteristics typically exhibited a sharp peak. At concentrations higher than 2.0 × 10-2 mol L-1, the peak flattened. The dilatational elasticity and viscosity of the shell were estimated by fitting the theoretical model to the experimental values, which revealed that both the elasticity and viscosity increased markedly at approximately 2.0 × 10-2 mol L-1. This suggests that the adsorption properties of Pluronic F-68 strongly affect the oscillation characteristics of microbubbles of a size suitable for medical ultrasound diagnostics.


Subject(s)
Poloxamer , Ultrasonics , Viscosity , Microbubbles , Contrast Media , Surface-Active Agents
6.
Science ; 377(6607): 709, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951708

ABSTRACT

Perfluorination gives cubane the capacity to host an extra electron in its inner structure.

7.
ACS Appl Mater Interfaces ; 14(30): 35027-35039, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35875888

ABSTRACT

Graphene oxide (GO), single-walled carbon nanohorn (CNHox), and nitrogen-doped CNH (N-CNH) were functionalized with fluorinated poly(ethylene glycol) (F-PEG) and/or with a fluorinated dendrimer (F-DEN) to prepare a series of assembled nanocomposites (GO/F-PEG, CNHox/F-PEG, N-CNH/F-PEG, N-CNH/F-DEN, and N-CNH/F-DEN/F-PEG) that provide effective multisite O2 reservoirs. In all cases, the O2 uptake increased with time and saturated after 10-20 min. When graphitic carbons (GO and CNHox) were coated with F-PEG, the O2 uptake doubled. The O2 loading was slightly higher in N-CNH compared to CNHox. Notably, coating N-CNH with F-DEN or F-PEG, or with both F-DEN and F-PEG, was more effective. The best performance was obtained with the N-CNH/F-DEN/F-PEG nanocomposite. The O2 uptake kinetics and mechanisms were analyzed in terms of the Langmuir adsorption equation based on a multibinding site assumption. This allowed the precise determination of multiple oxygen binding sites, including on the graphitic structure and in the dendrimer, F-DEN, and F-PEG. After an initial rapid, relatively limited release, the amount of O2 trapped in the nanomaterials remained high (>95%). This amount was marginally lower for the functionalized composites, but the oxygen stored was reserved for longer times. Finally, it is shown that these systems can generate singlet oxygen after irradiation by a light-emitting diode, and this production correlates with the amount of O2 loaded. Thus, it was anticipated that the present nanocomposites hierarchically assembled from components with different characters and complementary affinities for oxygen can be useful as O2 reservoirs for singlet oxygen generation to kill bacteria and viruses and to perform photodynamic therapy.

8.
Adv Colloid Interface Sci ; 294: 102407, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34120037

ABSTRACT

After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.

9.
J Colloid Interface Sci ; 593: 1-10, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33725538

ABSTRACT

HYPOTHESIS: Fluorocarbon gases introduced above monolayers of phospholipids at the air/water interface were recently found to promote the adsorption of diverse molecular compounds, with potential application in drug-loaded microbubble design. Quantitative determination of the fluorocarbon present in the monolayers is strongly needed for the development of such applications. We hypothesized that neutron reflectometry (NR) and ellipsometry experiments would allow quantification of the fluorocarbon trapped in the monolayers. EXPERIMENTS: We report the first quantitative determination of the extents of adsorption of perfluorohexane (F-hexane) on different phospholipid monolayers with respect to both their phase and isotopic form. To this aim, we applied an approach based on co-modeling the data obtained from NR and ellipsometry. FINDINGS: We found that F-hexane adsorbs strongly in monolayers of dipalmitoylphosphatidylcholine (DPPC) when they are both in the liquid expanded (LE) and liquid condensed (LC) phases, but to different extents according to the isotopic form of the phospholipid. Kinetic resolution of the interfacial composition from data on both isotopic contrasts (assuming chemical identicality) was therefore not possible using NR alone, so an alternative NR/ellipsometry co-modeling treatment was applied to data from each isotopic contrast. F-hexane adsorbs more abundantly on monolayers of hydrogenous DPPC than chain-deuterated DPPC when they are in the LE phase, whilst the opposite was observed when they monolayers are in the LC phase. The extents of adsorption of F-hexane in monolayers of dimyristoylphosphatidylcholine (DMPC, LE phase) and distearoylphosphatidylcholine (DSPC, LC phase) concurs with the strong dependence of those with phospholipids of different isotopic contrasts according to the monolayer phase. This new methodology can lead to advances in the novel characterization of fluorocarbons interacting with phospholipid monolayers of relevance to applications such as in the shells of fluorocarbon-stabilized medically-oriented microbubbles.


Subject(s)
Fluorocarbons , Phospholipids , 1,2-Dipalmitoylphosphatidylcholine , Adsorption , Gases , Surface Properties , Water
10.
Beilstein J Org Chem ; 17: 511-518, 2021.
Article in English | MEDLINE | ID: mdl-33727974

ABSTRACT

Ligand-targeted microbubbles are focusing interest for molecular imaging and delivery of chemotherapeutics. Lipid-peptide conjugates (lipopeptides) that feature alternating serine-glycine (SG) n segments rather than classical poly(oxyethylene) linkers between the lipid polar head and a targeting ligand were proposed for the liposome-mediated, selective delivery of anticancer drugs. Here, we report the synthesis of perfluoroalkylated lipopeptides (F-lipopeptides) bearing two hydrophobic chains (C n F2 n +1, n = 6, 7, 8, 1-3) grafted through a lysine moiety on a hydrophilic chain composed of a lysine-serine-serine (KSS) sequence followed by 5 SG sequences. These F-lipopeptides are precursors of targeting lipopeptide conjugates. A hydrocarbon counterpart with a C10H21 chain (4) was synthesized for comparison. The capacity for the F-lipopeptides to spontaneously adsorb at the air/water interface and form monolayers when combined with dipalmitoylphosphatidylcholine (DPPC) was investigated. The F-lipopeptides 1-3 demonstrated a markedly enhanced tendency to form monolayers at the air/water interface, with equilibrium surface pressures reaching ≈7-10 mN m-1 versus less than 1 mN m-1 only for their hydrocarbon analog 4. The F-lipopeptides penetrate in the DPPC monolayers in both liquid expanded (LE) and liquid condensed (LC) phases without interfacial film destabilization. By contrast, 4 provokes delipidation of the interfacial film. The incorporation of the F-lipopeptides 1-3 in microbubbles with a shell of DPPC and dipalmitoylphosphatidylethanolamine-PEG2000 decreased their mean diameter and increased their stability, the best results being obtained for the C8F17-bearing lipopeptide 3. By contrast, the hydrocarbon lipopeptide led to microbubbles with a larger mean diameter and a significantly lower stability.

11.
ACS Appl Bio Mater ; 4(3): 2591-2600, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014376

ABSTRACT

Nitric oxide (NO) gas nanocarrier materials were prepared via a hierarchical assembly of poly(amido amine) dendrimers with fluorocarbon binding sites (DEN-F) and fluorinated poly(ethylene glycol) (F-PEG) on nitrogen-doped carbon nanohorns (NCNHs). The loading abilities of NO gas in these nanocarrier materials increased with the nitrogen doping of CNH and hierarchies formed by DEN-F and F-PEG. Especially, the ability of CNH-based nanocomposite materials was better than that of graphene-based materials. The loading of NO gas arose an infrared absorption band at 1387 cm-1 and increased the intensity ratio of D and G bands in Raman spectra, although these phenomena diminished after the degas treatment. The antimicrobial effects on bacteria (Escherichia coli and Staphylococcus aureus) increased depending on the loading amount of NO gas. It was confirmed from these results that NO gas weakly interacts with nitrogen-doped CNH and is trapped in the void volumes of DEN-F and F-PEG hierarchies. Thus, the concentric hierarchy is preferable for slow release of NO gas due to the void volumes in DEN-F, F-PEG, and CNH hierarchical organization. This sustained release of NO gas is advantageous with regards to the potential biomedical gas therapy against bacteria and other parasites.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Dendrimers/pharmacology , Nanocomposites/chemistry , Nitric Oxide/pharmacology , Polyethylene Glycols/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Carbon/pharmacology , Dendrimers/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacology , Escherichia coli/drug effects , Gases , Halogenation , Materials Testing , Microbial Sensitivity Tests , Nitric Oxide/chemistry , Particle Size , Polyethylene Glycols/chemistry , Staphylococcus aureus/drug effects
12.
Cells ; 9(11)2020 11 18.
Article in English | MEDLINE | ID: mdl-33218154

ABSTRACT

BACKGROUND: Ex vivo lung perfusion (EVLP) is a technology that allows the re-evaluation of questionable donor lung before implantation and it has the potential to repair injured donor lungs that are otherwise unsuitable for transplantation. We hypothesized that perfluorocarbon-based oxygen carrier, a novel reconditioning strategy instilled during EVLP would improve graft function. METHODS: We utilized perfluorocarbon-based oxygen carrier (PFCOC) during EVLP to recondition and improve lung graft function in a pig model of EVLP and lung transplantation. Lungs were retrieved and stored for 24 h at 4 °C. EVLP was done for 6 h with or without PFCOC. In the transplantation groups, left lung transplantation was done after EVLP with or without PFCOC. Allograft function was assessed by means of pulmonary gas exchange, lung mechanics and vascular pressures, histology and transmission electron microscopy (TEM). RESULTS: In the EVLP only groups, physiological and biochemical markers during the 6-h perfusion period were comparable. However, perfusate lactate potassium levels were lower and ATP levels were higher in the PFCOC group. Radiologic assessment revealed significantly more lung infiltrates in the controls than in the PFCOC group (p = 0.04). In transplantation groups, perfusate glucose consumption was higher in the control group. Lactate levels were significantly lower in the PFCOC group (p = 0.02). Perfusate flavin mononucleotide (FMN) was significantly higher in the controls (p = 0.008). Post-transplant gas exchange was significantly better during the 4-h reperfusion period in the PFCOC group (p = 0.01). Plasma IL-8 and IL-12 levels were significantly lower in the PFCOC group (p = 0.01, p = 0.03, respectively). ATP lung tissue levels at the end of the transplantation were higher and myeloperoxidase (MPO) levels in lung tissue were lower in the PFCOC group compared to the control group. In the PFCOC group, TEM showed better tissue preservation and cellular viability. CONCLUSION: PFCOC application is safe during EVLP in lungs preserved 24 h at 4 °C. Although this strategy did not significantly affect the EVLP physiology, metabolic markers of the donor quality such as lactate production, glucose consumption, neutrophil infiltration and preservation of mitochondrial function were better in the PFCOC group. Following transplantation, PFCOC resulted in better graft function and TEM showed better tissue preservation, cellular viability and improved gas transport.


Subject(s)
Fluorocarbons/metabolism , Lung/pathology , Oxygen/therapeutic use , Animals , Disease Models, Animal , Female , Lung Transplantation/methods , Perfusion/methods , Swine , Tissue Donors
13.
Curr Opin Pharmacol ; 53: 117-125, 2020 08.
Article in English | MEDLINE | ID: mdl-32979727

ABSTRACT

Hypoxia is a major impediment to many foremost cancer treatments that require O2 for generation of tumoricidal reactive oxygen species. Liquid perfluorocarbons (PFCs) are inert gas solvents that help alleviate this oxygen deficit situation. PFC nanoemulsions have demonstrated oxygen delivery to tissues. The lifetime of 1O2 in PFCs is considerably expanded. PFC nanodroplets extravasate and accumulate in tumors. Alternatively, PFCs stabilize injectable O2 microbubbles. On-demand local O2 delivery is facilitated by ultrasound. Liquid PFC nanodroplets that convert into microbubbles upon activation provide another shuttle for O2-delivery. PFC nanocarriers can also be enriched with fluorescent dyes, radiopaque materials, photo(sono)sensitizers, loaded with chemotherapeutics, and fitted with targeting devices, or stimuli-responsive functions for image-guided theranostics. We review recent literature on PFC-based O2 carriers to enhance the efficacy of radiotherapy, photo(sono)dynamic therapy and chemotherapy. Of particular relevance to this series of reviews, PFC-based carriers may provide novel strategies to promote T-cell trafficking into tumors to improve immune responses.


Subject(s)
Fluorocarbons/administration & dosage , Oxygen/administration & dosage , Tumor Hypoxia/drug effects , Animals , Emulsions , Humans , Microbubbles , Nanostructures/administration & dosage , Neoplasms/drug therapy
14.
Chemphyschem ; 21(17): 1966-1970, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32710449

ABSTRACT

We found that monolayers of dipalmitoylphosphatidylcholine (DPPC) and semi-fluorinated tetrablock di(F10H16) self-assemble to form a new type of large, complex flower-like patterns on the surface of water and on solid substrates. The hierarchical organization of these unusual self-assemblies was investigated using compression and surface potential isotherms, in situ fluorescence and Brewster angle microscopies, and atomic force microscopy after transfer.

15.
Nanomaterials (Basel) ; 10(2)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098406

ABSTRACT

Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.

16.
Langmuir ; 36(3): 781-788, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31904974

ABSTRACT

Semifluorinated alkanes self-assemble into 30-40 nm-large surface domains (hemimicelles) at the air/water interface. They have been drawing increasing attention to stabilize microbubbles coated with lipids, which are used for enhancing the contrast in sonographic imaging. Although previous studies suggested that semifluorinated alkanes increase the stability of phospholipid membranes, little is known about how semifluorinated alkanes influence phase behaviors and mechanical properties of lipid-coated microbubbles. As a well-defined model of microbubble surfaces, we prepared monolayers consisting of a mixture of phospholipids and semifluorinated alkanes at the air/water interface and investigated the influence of hemimicelles of semifluorinated alkanes on the phase behavior and interfacial viscoelastic properties of phospholipid monolayers. Hemimicelles are phase-separated from phospholipids and accumulate at the phase boundary, which strongly modulates the correlation between solid phospholipid domains. Intringuingly, we found that the mixed monolayer of semifluorinated alkanes and phospholipids possesses linear and nonlinear viscoelastic properties comparable to those of phospholipid monolayers. Since the mixing of semifluorinated alkanes and phospholipids enables one to overcome the intrinsically low stability of pure semifluorinated alkanes against the change in the surface area of microbubbles through the partial dissolution of gas into the aqueous phase, this is a promising strategy for the stable coating of microbubbles in ultrasound diagnosis.

17.
Molecules ; 24(22)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739495

ABSTRACT

Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG) chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated as Langmuir monolayers at the surface of water. The OEG chain in the para position was grafted with a t-Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are models of structurally related OEG dendrons that were found to significantly improve the stability of aqueous dispersions of iron oxide nanoparticles when grafted on their surface. Compression isotherms showed that all OEG dendrons formed liquid-expanded Langmuir monolayers at large molecular areas. Further compression led to a transition ascribed to the solubilization of the OEG chains in the aqueous phase. Brewster angle microscopy (BAM) provided evidence that the dendrons fitted with hydrocarbon chains formed liquid-expanded monolayers throughout compression, whilst those fitted with fluorinated end-groups formed crystalline-like domains, even at large molecular areas. Dimyristoylphosphatidylcholine and dendron molecules were partially miscible in monolayers. The deviations to ideality were larger for the dendrons fitted with a fluorocarbon end-group chain than for those fitted with a hydrocarbon chain. Brewster angle microscopy and atomic force microscopy supported the view that the dendrons were ejected from the phospholipid monolayer during the OEG conformational transition and formed crystalline domains on the surface of the monolayer.


Subject(s)
Dendrimers/chemistry , Ethylene Glycol/chemistry , Phospholipids/chemistry , Water/chemistry , Air , Microscopy, Atomic Force , Surface Properties
18.
Beilstein J Nanotechnol ; 10: 2103-2115, 2019.
Article in English | MEDLINE | ID: mdl-31728258

ABSTRACT

Dendrons fitted with three oligo(ethylene glycol) (OEG) chains, one of which contains a fluorinated or hydrogenated end group and bears a bisphosphonate polar head (C n X2 n +1OEG8Den, X = F or H; n = 2 or 4), were synthesized and grafted on the surface of iron oxide nanoparticles (IONPs) for microbubble-mediated imaging and therapeutic purposes. The size and stability of the dendronized IONPs (IONP@C n X2 n +1OEG8Den) in aqueous dispersions were monitored by dynamic light scattering. The investigation of the spontaneous adsorption of IONP@C n X2 n +1OEG8Den at the interface between air or air saturated with perfluorohexane and an aqueous phase establishes that exposure to the fluorocarbon gas markedly increases the rate of adsorption of the dendronized IONPs to the gas/water interface and decreases the equilibrium interfacial tension. This suggests that fluorous interactions are at play between the supernatant fluorocarbon gas and the fluorinated end groups of the dendrons. Furthermore, small perfluorohexane-stabilized microbubbles (MBs) with a dipalmitoylphosphatidylcholine (DPPC) shell that incorporates IONP@C n X2 n +1OEG8Den (DPPC/Fe molar ratio 28:1) were prepared and subsequently characterized using both optical microscopy and an acoustical method of size determination. The dendrons fitted with fluorinated end groups lead to smaller and more stable MBs than those fitted with hydrogenated groups. The most effective result is already obtained with C2F5, for which MBs of ≈1.0 µm in radius reach a half-life of ≈6.0 h. An atomic force microscopy investigation of spin-coated mixed films of DPPC/IONP@C2X5OEG8Den combinations (molar ratio 28:1) shows that the IONPs grafted with the fluorinated dendrons are located within the phospholipid film, while those grafted with the hydrocarbon dendrons are located at the surface of the phospholipid film.

19.
Langmuir ; 35(35): 11322-11329, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31419140

ABSTRACT

Microbubbles shelled with soft materials are expected to find applications as ultrasound-sensitive drug delivery systems, including through sonoporation. Microbubbles with specific vibrational characteristics and long intravascular persistence are required for clinical uses. To achieve this aim, the kinetics of the microbubble shell components at the gas/liquid interface while being subjected to ultrasound need to be better understood. This paper investigates the vibration characteristics and lifetime of single microbubbles coated with a poloxamer surfactant, Pluronic F-68, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) under ultrasound irradiation. Air- and perfluorohexane (PFH)-filled microbubbles coated with Pluronic F-68 and DMPC at several concentrations (0 to 10-2 mol L-1) were produced. An optical measurement system using a laser Doppler vibrometer and microscope was used to observe the radial vibration mode of single microbubbles. The vibrational displacement amplitude and resonance radius of Pluronic- or DMPC-coated microbubbles were found to depend very little on the concentrations. The resonance radius was around 65 µm at 38.8 kHz under all the experimental conditions investigated. The lifetime of the microbubbles was investigated simultaneously by measuring their temporal change in volume, and it was increased with Pluronic concentration. Remarkably, the oscillation amplitude of the bubble has an effect on the bubble lifetime. In other words, larger oscillation under the resonance condition accelerates the diffusion of the inner gas.

20.
Chemphyschem ; 20(13): 1698-1705, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31083773

ABSTRACT

Semifluorinated alkanes FnHm self-assemble into nanometer-sized surface micelles at the air-water interface. In this study, we investigated how an atmosphere enriched with perfluorohexane (PFH) influences the interfacial viscoelasticity and structural order of a monolayer of FnHm by the combination of dilational rheology and grazing-incidence small-angle X-ray scattering (GISAXS). The monolayers behaved predominantly elastic which can be attributed to the strong dipole repulsions of the surface domains. Enrichment of the atmosphere with PFH lead to an increase of the compressibility and a decrease of the elastic modulus without altering the structural ordering of the FnHm molecules into highly correlated nanodomains, suggesting the adsorption of PFH molecules to the free spaces between the domains. The capability of FnHm domains to retain the structural integrity in the presence of PFH gas is promising for the fabrication of stable microbubbles for sonographic imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...