Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chirality ; 36(3): e23659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445305

ABSTRACT

Due to a great demand for amylose and cellulose polymeric chromatographic chiral columns, the enantiomeric separation of thiourea derivatives of naringenin was achieved on the different amylose (Chiralpak-IB) and cellulose chiral (Chiralcel-OJ and Chiralcel-OD-3R) columns with varied chromatographic conditions. The isocratic mobile phases used were ethanol and methanol, where ethanol/hexane and methanol/hexane were used as gradient mode and were prepared in volume/volume relation. The separation and resolution factors for all the enantiomers were in the range of 1.25 to 3.47 and 0.48 to 1.75, respectively. The enantiomeric resolution was obtained within 12 min making fast separation. The docking studies confirmed the chiral recognition mechanisms with binding affinities in the range of -4.7 to -5.7 kcal/mol. The reported compounds have good anticoagulant activities and may be used as anticoagulants in the future. Besides, chiral separation is fast and is useful for enantiomeric separation in any laboratory in the world.


Subject(s)
Amylose , Flavanones , Hexanes , Methanol , Stereoisomerism , Cellulose , Polymers , Ethanol , Thiourea
2.
Acta Crystallogr C Struct Chem ; 79(Pt 8): 324-333, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37504893

ABSTRACT

The title Schiff base compound, (E)-2-{[(4-methoxynaphthalen-1-yl)methylidene]amino}-4-methylphenol, C19H17NO2 (I), was synthesized via the reaction of 2-amino-4-methylphenol with 4-methoxynaphthalene-1-carbaldehyde. The structure of I was characterized by NMR, IR and UV-Vis spectroscopies in different solvents. The interatomic contacts in the crystal structure were explored using Hirshfeld surface analysis, which, together with the two-dimensional fingerprint plots, confirm the predominance of dispersion forces in the crystal structure. The molecule of I has a twisted conformation, with the mean plane of the naphthalene ring system being inclined to the plane of the phenol ring by 33.41 (4)°. In the crystal, molecules are linked by C-H...O hydrogen bonds to form inversion dimers. There are parallel-displaced π-π interactions present, together with C-H...π interactions, resulting in the formation of a three-dimensional structure. The anticorrosion potential of I was also investigated using density functional theory (DFT) in the gas phase and in various solvents. The compound was shown to exhibit significant anticorrosion properties for iron and copper. The molecular structure of I was determined by DFT calculations at the M062X/6-311+g(d) level of theory and compared with the crystallographically determined structure. Local and global reactivity descriptors were computed to predict the reactivity of I. Excellent agreement was observed between the calculated results and the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...