Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 14(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36826862

ABSTRACT

Cu addition to alloys for biomedical applications has been of great interest to reduce bacterial growth. In situ-alloyed Ti6Al4V(ELI)-3at.%Cu was successfully manufactured by laser powder bed fusion (L-PBF). Even so, post-heat treatments are required to avoid distortions and/or achieve required/desired mechanical and fatigue properties. The present study is focused on the investigation of microstructural changes in L-PBF Ti6Al4V(ELI)-3at.%Cu after stress relieving and annealing treatments, as well as their influence on osteoblast and bactericidal behavior. After the stress relieving treatment, a homogenously distributed ß phase and CuTi2 intermetallic precipitates were observed over the α' matrix. The annealing treatment led to the increase in amount and size of both types of precipitates, but also to phase redistribution along α lamellas. Although microstructural changes were not statistically significant, such increase in ß and CuTi2 content resulted in an increase in osteoblast proliferation after 14 days of cell culture. A significant bactericidal behavior of L-PBF Ti6Al4V(ELI)-3at.%Cu by means of ion release was found after the annealing treatment, provably due to the easier release of Cu ions from ß phase. Biofilm formation was inhibited in all on Cu-alloyed specimens with stress relieving but also annealing treatment.

2.
Materials (Basel) ; 14(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34885415

ABSTRACT

The intensive cytotoxicity of pure copper is effectively kills bacteria, but it can compromise cellular behavior, so a rational balance must be found for Cu-loaded implants. In the present study, the individual and combined effect of surface composition and roughness on osteoblast cell behavior of in situ alloyed Ti6Al4V(ELI)-3 at.% Cu obtained by laser powder bed fusion was studied. Surface composition was studied using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Surface roughness measurements were carried out using confocal microscopy. In vitro osteoblast performance was evaluated by means of cell morphology observation of cell viability, proliferation, and mineralization. In vitro studies were performed at 1, 7, and 14 days of cell culture, except for cell mineralization at 28 days, on grounded and as-built (rough) samples with and without 3 at.% Cu. The addition of 3 at.% Cu did not show cell cytotoxicity but inhibited cell proliferation. Cell mineralization tends to be higher for samples with 3 at.% Cu content. Surface roughness inhibited cell proliferation too, but showed enhanced cell mineralization capacity and therefore, higher osteoblast performance, especially when as-built samples contained 3 at.% Cu. Cell proliferation was only observed on ground samples without Cu but showed the lowest cell mineralization.

3.
Materials (Basel) ; 10(10)2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28972546

ABSTRACT

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

SELECTION OF CITATIONS
SEARCH DETAIL
...