Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38895278

ABSTRACT

Gene-editing technologies promise to create a new class of therapeutics that can achieve permanent correction with a single intervention. Besides eliminating mutant alleles in familial disease, gene-editing can also be used to favorably manipulate upstream pathophysiologic events and alter disease-course in wider patient populations, but few such feasible therapeutic avenues have been reported. Here we use CRISPR-Cas9 to edit the last exon of amyloid precursor protein (App), relevant for Alzheimer's disease (AD). Our strategy effectively eliminates an endocytic (YENPTY) motif at APP C-terminus, while preserving the N-terminus and compensatory APP-homologues. This manipulation favorably alters events along the amyloid-pathway - inhibiting toxic APP-ß-cleavage fragments (including Aß) and upregulating neuroprotective APP-α-cleavage products. AAV-driven editing ameliorates neuropathologic, electrophysiologic, and behavioral deficits in an AD knockin mouse model. Effects persist for many months, and no abnormalities are seen in WT mice even after germline App-editing; underlining overall efficacy and safety. Pathologic alterations in the glial-transcriptome of App-KI mice, as seen by single nuclei RNA-sequencing (sNuc-Seq), are also normalized by App C-terminus editing. Our strategy takes advantage of innate transcriptional rules that render terminal exons insensitive to nonsense-decay, and the upstream manipulation is expected to be effective for all forms of AD. These studies offer a path for a one-time disease-modifying treatment for AD.

2.
Sci Rep ; 14(1): 12274, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806540

ABSTRACT

Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.


Subject(s)
Cranial Irradiation , Extracellular Vesicles , GABAergic Neurons , Animals , Extracellular Vesicles/metabolism , Rats , Cranial Irradiation/adverse effects , GABAergic Neurons/metabolism , GABAergic Neurons/radiation effects , Male , Hippocampus/radiation effects , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/radiation effects , Neurons/metabolism , Glutamic Acid/metabolism , Neuronal Plasticity/radiation effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Behavior, Animal/radiation effects
3.
Nat Commun ; 15(1): 3836, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714691

ABSTRACT

Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.


Subject(s)
Activin Receptors, Type I , Epigenesis, Genetic , Hippocampus , Memory, Long-Term , Physical Conditioning, Animal , Animals , Female , Humans , Male , Mice , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Aging/genetics , Aging/physiology , Hippocampus/metabolism , Memory, Long-Term/physiology , Mice, Inbred C57BL , Neuronal Plasticity/genetics , Physical Conditioning, Animal/physiology , Promoter Regions, Genetic
4.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38575342

ABSTRACT

The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.


Subject(s)
Hippocampus , Intellectual Disability , Jumonji Domain-Containing Histone Demethylases , Memory Consolidation , Memory, Long-Term , Animals , Hippocampus/metabolism , Mice , Male , Female , Intellectual Disability/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Memory Consolidation/physiology , Memory, Long-Term/physiology , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Mice, Inbred C57BL , DNA-Binding Proteins
5.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460121

ABSTRACT

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Neuroglia/pathology , Plaque, Amyloid/pathology , Humans
6.
Alzheimers Dement ; 20(3): 2173-2190, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278523

ABSTRACT

INTRODUCTION: Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS: A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS: Genetic ablation or pharmacological inhibition of C5aR1 partially rescues excessive pre-synaptic pruning and synaptic loss in an age and region-dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION: Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD. HIGHLIGHTS: C5aR1 ablation restores long-term potentiation in the Arctic model of AD. C5aR1 ablation rescues region specific excessive pre-synaptic loss. C5aR1 antagonist, PMX205, rescues VGlut1 loss in the Tg2576 model of AD. C1q tagging is not sufficient to induce VGlut1 microglial ingestion. Astrocytes contribute to excessive pre-synaptic loss at late stages of the disease.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/genetics , Synapses , Long-Term Potentiation , Disease Models, Animal
7.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873302

ABSTRACT

INTRODUCTION: Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS: A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS: Genetic ablation or pharmacological inhibition of C5aR1 rescues the excessive pre-synaptic pruning and synaptic loss in an age and region dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION: Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD.

8.
Cancer Res Commun ; 3(4): 725-737, 2023 04.
Article in English | MEDLINE | ID: mdl-37377749

ABSTRACT

Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance: Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.


Subject(s)
Long-Term Potentiation , Neuroinflammatory Diseases , Male , Mice , Female , Animals , Neuronal Plasticity , Radiation Dose Hypofractionation
9.
Radiother Oncol ; 186: 109767, 2023 09.
Article in English | MEDLINE | ID: mdl-37385377

ABSTRACT

Long-term potentiation (LTP) was used to gauge the impact of conventional and FLASH dose rates on synaptic transmission. Data collected from the hippocampus and medial prefrontal cortex confirmed significant inhibition of LTP after 10 fractions of 3 Gy (30 Gy total) conventional radiotherapy. Remarkably, 10x3Gy FLASH radiotherapy and unirradiated controls were identical and exhibited normal LTP.


Subject(s)
Long-Term Potentiation , Neuronal Plasticity , Mice , Animals , Neuronal Plasticity/physiology , Long-Term Potentiation/physiology , Hippocampus/physiology , Synaptic Transmission/physiology
10.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36803190

ABSTRACT

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Subject(s)
Alzheimer Disease , Demyelinating Diseases , Mice , Animals , Alzheimer Disease/metabolism , Cuprizone/metabolism , RNA Splicing , Mutation , Plaque, Amyloid/pathology , Disease Models, Animal , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Microglia/metabolism , Brain/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
11.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607431

ABSTRACT

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Subject(s)
Hippocampus , Radiation Exposure , Female , Mice , Male , Animals , Synapses , Long-Term Potentiation , Neuronal Plasticity
12.
Neuro Oncol ; 25(5): 927-939, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36334265

ABSTRACT

BACKGROUND: Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes. METHODS: Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements. RESULTS: The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels. CONCLUSIONS: Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.


Subject(s)
Brain Neoplasms , Humans , Child , Male , Female , Animals , Mice , Disease Models, Animal , Brain Neoplasms/radiotherapy , Brain Neoplasms/etiology , Radiotherapy Dosage , Radiotherapy/adverse effects
13.
iScience ; 25(10): 105263, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274959

ABSTRACT

Degeneration of dopaminergic neurons leads to Parkinson's disease (PD), characterized by reduced levels of striatal dopamine (DA) and impaired voluntary movements. DA replacement is achieved by levodopa treatment which in long-term causes involuntary movements or dyskinesia. Dyskinesia is linked to the pulsatile activation of D1 receptors of the striatal medium spiny neurons (MSNs) forming the direct output pathway (dMSNs). The contribution of DA stimulation of D2R in MSNs of the indirect pathway (iMSNs) is less clear. Using the 6-hydroxydopamine model of PD, here we show that loss of DA-mediated inhibition of these neurons intensifies levodopa-induced dyskinesia (LID) leading to reprogramming of striatal gene expression. We propose that the motor impairments characteristic of PD and of its therapy are critically dependent on D2R-mediated iMSNs activity. D2R signaling not only filters inputs to the striatum but also indirectly regulates dMSNs mediated responses.

14.
Sci Data ; 8(1): 270, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654824

ABSTRACT

Mouse models of human diseases are invaluable tools for studying pathogenic mechanisms and testing interventions and therapeutics. For disorders such as Alzheimer's disease in which numerous models are being generated, a challenging first step is to identify the most appropriate model and age to effectively evaluate new therapeutic approaches. Here we conducted a detailed phenotypic characterization of the 5xFAD model on a congenic C57BL/6 J strain background, across its lifespan - including a seldomly analyzed 18-month old time point to provide temporally correlated phenotyping of this model and a template for characterization of new models of LOAD as they are generated. This comprehensive analysis included quantification of plaque burden, Aß biochemical levels, and neuropathology, neurophysiological measurements and behavioral and cognitive assessments, and evaluation of microglia, astrocytes, and neurons. Analysis of transcriptional changes was conducted using bulk-tissue generated RNA-seq data from microdissected cortices and hippocampi as a function of aging, which can be explored at the MODEL-AD Explorer and AD Knowledge Portal. This deep-phenotyping pipeline identified novel aspects of age-related pathology in the 5xFAD model.


Subject(s)
Alzheimer Disease/genetics , Disease Models, Animal , Phenotype , Animals , Behavior, Animal , Hippocampus , Long-Term Potentiation , Mice , Mice, Inbred C57BL , RNA-Seq , Synaptic Transmission
15.
Int J Mol Sci ; 22(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34445726

ABSTRACT

A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.


Subject(s)
Cosmic Radiation/adverse effects , Hippocampus/radiation effects , Neutrons/adverse effects , Animals , Behavior, Animal/radiation effects , Male , Memory/radiation effects , Mice , Neuronal Plasticity/radiation effects
16.
Nat Commun ; 12(1): 2421, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893290

ABSTRACT

The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aß under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aß sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aß sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAß expression, rescues cognition and reduces the formation of PAS granules.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Brain/physiopathology , Disease Models, Animal , Mutation , Neuronal Plasticity/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Female , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics
17.
Front Neurosci ; 15: 785276, 2021.
Article in English | MEDLINE | ID: mdl-35140584

ABSTRACT

Animal models of disease are valuable resources for investigating pathogenic mechanisms and potential therapeutic interventions. However, for complex disorders such as Alzheimer's disease (AD), the generation and availability of innumerous distinct animal models present unique challenges to AD researchers and hinder the success of useful therapies. Here, we conducted an in-depth analysis of the 3xTg-AD mouse model of AD across its lifespan to better inform the field of the various pathologies that appear at specific ages, and comment on drift that has occurred in the development of pathology in this line since its development 20 years ago. This modern characterization of the 3xTg-AD model includes an assessment of impairments in long-term potentiation followed by quantification of amyloid beta (Aß) plaque burden and neurofibrillary tau tangles, biochemical levels of Aß and tau protein, and neuropathological markers such as gliosis and accumulation of dystrophic neurites. We also present a novel comparison of the 3xTg-AD model with the 5xFAD model using the same deep-phenotyping characterization pipeline and show plasma NfL is strongly driven by plaque burden. The results from these analyses are freely available via the AD Knowledge Portal (https://modeladexplorer.org/). Our work demonstrates the utility of a characterization pipeline that generates robust and standardized information relevant to investigating and comparing disease etiologies of current and future models of AD.

18.
Sci Rep ; 10(1): 9174, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513972

ABSTRACT

Physical exercise is a powerful modulator of learning and memory. Mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Exercise studies targeting postnatal periods of hippocampal maturation (specifically targeting periods of synaptic reorganization and plasticity) are lacking. We characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups increased their running distances during ELE. When exposed to a subthreshold learning stimulus, juv ELE and juv-adol ELE formed lasting long-term memory for an object location memory task, whereas sedentary and adol ELE mice did not. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 in the juvenile-adolescent ELE group. I/O curves were also significantly modulated in all mice that underwent ELE. Our results suggest that early-life exercise, specifically during the 4th postnatal week, can enable hippocampal memory, synaptic plasticity, and alter hippocampal excitability when occurring during postnatal periods of hippocampal maturation.


Subject(s)
Aging/physiology , CA1 Region, Hippocampal/physiology , Long-Term Potentiation/physiology , Memory , Neuronal Plasticity/physiology , Physical Conditioning, Animal/physiology , Animals , CA1 Region, Hippocampal/growth & development , Mice, Inbred C57BL , Models, Animal
19.
eNeuro ; 6(4)2019.
Article in English | MEDLINE | ID: mdl-31383727

ABSTRACT

As NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates ∼1.5×105 higher than those actually encountered in space. Using a new, low dose-rate neutron irradiation facility, we have uncovered that realistic, low dose-rate exposures produce serious neurocognitive complications associated with impaired neurotransmission. Chronic (6 month) low-dose (18 cGy) and dose rate (1 mGy/d) exposures of mice to a mixed field of neutrons and photons result in diminished hippocampal neuronal excitability and disrupted hippocampal and cortical long-term potentiation. Furthermore, mice displayed severe impairments in learning and memory, and the emergence of distress behaviors. Behavioral analyses showed an alarming increase in risk associated with these realistic simulations, revealing for the first time, some unexpected potential problems associated with deep space travel on all levels of neurological function.


Subject(s)
Cognition/radiation effects , Cosmic Radiation/adverse effects , Hippocampus/radiation effects , Neutrons/adverse effects , Photons/adverse effects , Synaptic Transmission/radiation effects , Animals , Anxiety/etiology , Depression/etiology , Extinction, Psychological/radiation effects , Male , Memory/radiation effects , Mice, Inbred C57BL , Neurons/radiation effects , Social Behavior
20.
Aging Cell ; 17(6): e12832, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30276955

ABSTRACT

Microglia, the resident immune cell of the brain, can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Withdrawal of CSF1R inhibition then stimulates microglial repopulation, effectively replacing the microglial compartment. In the aged brain, microglia take on a "primed" phenotype and studies indicate that this coincides with age-related cognitive decline. Here, we investigated the effects of replacing the aged microglial compartment with new microglia using CSF1R inhibitor-induced microglial repopulation. With 28 days of repopulation, replacement of resident microglia in aged mice (24 months) improved spatial memory and restored physical microglial tissue characteristics (cell densities and morphologies) to those found in young adult animals (4 months). However, inflammation-related gene expression was not broadly altered with repopulation nor the response to immune challenges. Instead, microglial repopulation resulted in a reversal of age-related changes in neuronal gene expression, including expression of genes associated with actin cytoskeleton remodeling and synaptogenesis. Age-related changes in hippocampal neuronal complexity were reversed with both microglial elimination and repopulation, while microglial elimination increased both neurogenesis and dendritic spine densities. These changes were accompanied by a full rescue of age-induced deficits in long-term potentiation with microglial repopulation. Thus, several key aspects of the aged brain can be reversed by acute noninvasive replacement of microglia.


Subject(s)
Aging/metabolism , Cognition/physiology , Microglia/metabolism , Neurons/metabolism , Animals , Cell Count , Cell Shape/drug effects , Cognition/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Gene Expression Regulation/drug effects , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides/pharmacology , Long-Term Potentiation/drug effects , Male , Mice, Inbred C57BL , Microglia/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Synapses/drug effects , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...