Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33059303

ABSTRACT

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Subject(s)
Aza Compounds/chemistry , Enzyme Inhibitors/chemistry , Quinolines/chemistry , Animals , Binding Sites , Brain/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Kinetics , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Rats , Structure-Activity Relationship
3.
Skelet Muscle ; 10(1): 30, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33092650

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS: Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS: Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS: In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.


Subject(s)
Enzyme Inhibitors/pharmacology , Metabolome , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/drug therapy , NAD/metabolism , Niacinamide/analogs & derivatives , Pyridinium Compounds/pharmacology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Animals , Dystrophin/deficiency , Enzyme Inhibitors/therapeutic use , Male , Membrane Glycoproteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Contraction , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Niacinamide/pharmacology , Niacinamide/therapeutic use , Pyridinium Compounds/therapeutic use
4.
Nat Commun ; 10(1): 4659, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604915

ABSTRACT

MG53 is a muscle-specific TRIM-family protein that presides over the cell membrane repair response. Here, we show that MG53 present in blood circulation acts as a myokine to facilitate tissue injury-repair and regeneration. Transgenic mice with sustained elevation of MG53 in the bloodstream (tPA-MG53) have a healthier and longer life-span when compared with littermate wild type mice. The tPA-MG53 mice show normal glucose handling and insulin signaling in skeletal muscle, and sustained elevation of MG53 in the bloodstream does not have a deleterious impact on db/db mice. More importantly, the tPA-MG53 mice display remarkable dermal wound healing capacity, enhanced muscle performance, and improved injury-repair and regeneration. Recombinant human MG53 protein protects against eccentric contraction-induced acute and chronic muscle injury in mice. Our findings highlight the myokine function of MG53 in tissue protection and present MG53 as an attractive biological reagent for regenerative medicine without interference with glucose handling in the body.


Subject(s)
Membrane Proteins/physiology , Wound Healing , Animals , Calcium/metabolism , Glucose/metabolism , Glucose Tolerance Test , Insulin/metabolism , Membrane Proteins/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Regeneration/genetics , Systems Biology
5.
Bioorg Med Chem ; 27(8): 1456-1478, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30858025

ABSTRACT

With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50 = 220,000 nM, LE = 0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50 = 3,100 nM, LE = 0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50 = 9.9 nM, LE = 0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacology , Animals , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Humans , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/metabolism , Lipocalins/chemistry , Lipocalins/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Quinolines/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL