Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 72: 337-352, 2022 07.
Article in English | MEDLINE | ID: mdl-35545205

ABSTRACT

Polyethylene terephthalate (PET), the most common synthetic polyester today, is largely produced from fossil resources, contributing to global warming. Consequently, sustainable sources must be developed to meet the increasing demand for this useful polymer. Here, we demonstrate a cascaded value chain that provides green PET from lignin, the world's most underutilized renewable, via fermentative production of cis, cis-muconate (MA) from lignin-based aromatics as a central step. Catechol, industrially the most relevant but apparently also a highly toxic lignin-related aromatic, strongly inhibited MA-producing Pseudomonas putida MA-1. Assessed by 13C metabolic flux analysis, the microbe substantially redirected its carbon core fluxes, resulting in enhanced NADPH supply for stress defense but causing additional ATP costs. The reconstruction of MA production in a genome-reduced P. putida chassis yielded novel producers with superior pathway fluxes and enhanced robustness to catechol and a wide range of other aromatics. Using the advanced producer P. putida MA-10 catechol, MA could be produced in a fed-batch process from catechol (plus glucose as additional growth substrate) up to an attractive titer of 74 g L-1 and a space-time-yield of 1.4 g L-1 h-1. In terms of co-consumed sugar, the further streamlined strain MA-11 achieved the highest yield of 1.4 mol MA (mol glucose)-1, providing a striking economic advantage. Following fermentative production, bio-based MA was purified and used to chemically synthetize the PET monomer terephthalic acid and the comonomer diethylene glycol terephthalic acid through five steps, which finally enabled the first green PET from lignin.


Subject(s)
Pseudomonas putida , Catechols/metabolism , Glucose/metabolism , Lignin/metabolism , Oxidation-Reduction , Polyethylene Terephthalates/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
2.
J Am Chem Soc ; 128(35): 11620-30, 2006 Sep 06.
Article in English | MEDLINE | ID: mdl-16939287

ABSTRACT

The tandem [4+2]/[3+2] cycloaddition of nitroalkenes has been employed in the synthesis of 1-azafenestranes, molecules of theoretical interest because of planarizing distortion of their central carbon atoms. The synthesis of c,c,c,c-[5.5.5.5]-1-azafenestrane was completed in good yield from a substituted nitrocyclopentene, and its borane adduct was analyzed through X-ray crystallography, which showed a moderate distortion from ideal tetrahedral geometry. The syntheses of two members of the [4.5.5.5] family of 1-azafenestranes are also reported, including one with a trans fusion at a bicyclic ring junction which brings about considerable planarization of one of the central angles (16.8 degrees deviation from tetrahedral geometry). While investigating the [4.5.5.5]-1-azafenestranes, a novel dyotropic rearrangement that converts nitroso acetals into tetracyclic aminals was discovered. Through conformational analysis, a means to prevent this molecular reorganization was formulated and realized experimentally with the use of a bulky vinyl ether in the key [4+2] cycloaddition reaction. Finally, DFT calculations on relative strain energy for the 1-azafenestranes, as well as their predicted central angles, are disclosed.


Subject(s)
Aza Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Cyclopropanes/chemistry , Polycyclic Compounds/chemistry , Aza Compounds/chemistry , Bridged Bicyclo Compounds/chemistry , Crystallography, X-Ray , Cyclization , Models, Molecular , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...