Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Analyst ; 149(9): 2637-2646, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38529543

ABSTRACT

Silver nanoparticles (AgNPs) conjugated with polymers are well-known for their powerful and effective antimicrobial properties. In particular, the incorporation of AgNPs in biocompatible catecholamine-based polymers, such as polydopamine (PDA), has recently shown promising antimicrobial activity, due to the synergistic effects of the AgNPs, silver(I) ions released and PDA. In this study, we generated AgNPs-PDA-patterned surfaces by localised electrochemical depositions, using a double potentiostatic method via scanning electrochemical cell microscopy (SECCM). This technique enabled the assessment of a wide parameter space in a high-throughput manner. The optimised electrodeposition process resulted in stable and homogeneously distributed AgNP-microspots, and their antimicrobial activity against Escherichia coli was assessed using atomic force microscopy (AFM)-based force spectroscopy, in terms of bacterial adhesion and cell elasticity. We observed that the bacterial outer membrane underwent significant structural changes, when in close proximity to the AgNPs, namely increased hydrophilicity and stiffness loss. The spatially varied antimicrobial effect found experimentally was rationalised by numerical simulations of silver(I) concentration profiles.


Subject(s)
Escherichia coli , Metal Nanoparticles , Silver , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microscopy, Atomic Force , Polymers/chemistry , Polymers/pharmacology , Bacterial Adhesion/drug effects , Indoles/chemistry , Indoles/pharmacology
2.
Anal Chem ; 96(8): 3308-3317, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354051

ABSTRACT

In this work, we present (hemi)spherical atomic force microscopy (AFM) sensors for the detection of hydrogen peroxide. Platinum-black (Pt-B) was electrodeposited onto conductive colloidal AFM probes or directly at recessed microelectrodes located at the end of a tipless cantilever, resulting in electrocatalytically active cantilever-based sensors that have a small geometric area but, due to the porosity of the films, exhibit a large electroactive surface area. Focused ion beam-scanning electron microscopy tomography revealed the porous 3D structure of the deposited Pt-B. Given the accurate positioning capability of AFM, these probes are suitable for local in situ sensing of hydrogen peroxide and at the same time can be used for (electrochemical) force spectroscopy measurements. Detection limits for hydrogen peroxide in the nanomolar range (LOD = 68 ± 7 nM) were obtained. Stability test and first in situ proof-of-principle experiments to achieve the electrochemical imaging of hydrogen peroxide generated at a microelectrode and at photocatalytically active structured poly(heptazine imide) films are demonstrated. Force spectroscopic data of the photocatalyst films were recorded in ambient conditions, in solution, and by applying a potential, which demonstrates the versatility of these novel Pt-B-modified spherical AFM probes.

3.
ChemSusChem ; 17(5): e202301142, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37870540

ABSTRACT

Amorphous Al2 O3 film that naturally exists on any Al substrate is a critical bottleneck for the cyclic performance of metallic Al in rechargeable Al batteries. The so-called electron/ion insulator Al oxide slows down the anode's activation and hinders Al plating/stripping. The Al2 O3 film induces different surface properties (roughness and microstructure) on the metal. Al foils present two optically different sides (shiny and non-shiny), but their surface properties and influence on plating and stripping have not been studied so far. Compared to the shiny side, the non-shiny one has a higher (~28 %) surface roughness, and its greater concentration of active sites (for Al plating and stripping) yields higher current densities. Immersion pretreatments in Ionic-Liquid/AlCl3 -based electrolyte with various durations modify the surface properties of each side, forming an electrode-electrolyte interphase layer rich in Al, Cl, and N. The created interphase layer provides more tunneling paths for better Al diffusion upon plating and stripping. After 500 cycles, dendritic Al deposition, generated active sites, and the continuous removal of the Al metal and oxide cause accelerated local corrosion and electrode pulverization. We highlight the mechanical surface properties of cycled Al foil, considering the role of immersion pretreatment and the differences between the two sides.

4.
Anal Chem ; 95(45): 16600-16608, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37883708

ABSTRACT

Bacterial sensing based on quantum cascade laser spectroscopy coupled with diamond or gallium arsenide thin-film waveguides is a novel analytical tool for gaining high-resolution infrared spectroscopic information of planktonic and sessile bacteria, as shown in the present study for Escherichia coli. During observation periods of up to 24 h, diamond and gallium arsenide thin-film waveguide laser spectroscopy was compared to information obtained via conventional Fourier transform infrared spectroscopy. The proliferation behavior of E. coli at those surfaces was complementarily investigated using atomic force microscopy and scanning electron microscopy.


Subject(s)
Escherichia coli , Lasers , Spectroscopy, Fourier Transform Infrared , Diamond/chemistry
5.
Chemistry ; 29(72): e202302284, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37699127

ABSTRACT

Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.


Subject(s)
Lipid Bilayers , Liposomes , Lipid Bilayers/chemistry , Liposomes/chemistry , Dimyristoylphosphatidylcholine/chemistry , Photosensitizing Agents , Phospholipids/chemistry
6.
Analyst ; 148(20): 5144-5151, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37702563

ABSTRACT

Diamond thin-film waveguides were combined with quantum cascade lasers augmented by drop-casted graphene enabling surface-enhanced infrared absorption spectroscopy. Enhancing the signal provides access to an even more pronounced vibrational signature suitable for analytical scenarios where only a small sample volume and/or low analyte concentration levels are prevalent. To demonstrate the utility of this concept, taurine was investigated as a model analyte.

7.
Angew Chem Int Ed Engl ; 62(35): e202306170, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37218398

ABSTRACT

Molecular metal oxides, so-called polyoxometalates (POMs), have shown outstanding performance as catalysts and lately attracted interest as materials in energy conversion and storage systems due to their capability of storing and exchanging multiple electrons. Here, we report the first example of redox-driven reversible electrodeposition of molecular vanadium oxide clusters, leading to the formation of thin films. The detailed investigation of the deposition mechanism reveals that the reversibility is dependent on the reduction potential. Correlating electrochemical quartz microbalance studies with X-ray photoelectron spectroscopy (XPS) data gave insight into the redox chemistry and oxidation states of vanadium in the deposited films in dependence on the potential window. A multi-electron reduction of the polyoxovanadate cluster, which facilitates the potassium (K+ ) cation-assisted reversible formation of potassium vanadium oxide thin films was confirmed. At anodic potentials, re-oxidation of the polyoxovanadate and complete stripping of the thin film is observed for films deposited at potentials more positive than -500 mV vs. Ag/Ag+ , while electrodeposition at more negative cathodic potential reduces the electrochemical reversibility of the process and increases the stripping overpotential. As proof of principle, we demonstrate the electrochemical performance of the deposited films for potential use in potassium-ion batteries.

8.
ACS Sens ; 8(5): 1871-1881, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37125943

ABSTRACT

Diamond thin-film waveguides with a nanocrystalline diamond layer of approximately 20 µm thickness were used in the mid-infrared regime in combination with quantum cascade lasers to detect the IR signature of caffeine. The diamond thin-film waveguides were fundamentally characterized with respect to their morphological properties via AFM and SEM. Theoretical simulations confirmed the feasibility of using a larger sensing area of approximately 50 mm2 compared to conventionally used strip waveguides. A comprehensive and comparative analysis confirmed the performance of the diamond thin-film-waveguide-based sensing system vs data obtained via conventional attenuated total reflection Fourier transform infrared spectroscopy using a single-bounce diamond internal reflection element. Hence, the utility of innovative diamond thin-film-waveguide-based sensors coupled with quantum cascade laser light sources has been confirmed as an innovative analytical tool, which may be used in a wide range of application scenarios, ranging from environmental to medical sensing, taking advantage of the robustness and inertness of nanocrystalline diamond.


Subject(s)
Caffeine , Diamond , Diamond/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Lasers
9.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36876900

ABSTRACT

Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.

10.
Front Immunol ; 14: 1125594, 2023.
Article in English | MEDLINE | ID: mdl-36911662

ABSTRACT

Introduction: Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers. Methods: After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA). Results: PBMCs showed significantly higher mitochondrial O2 uptake and lower O 2 • - production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis. Conclusion: In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected. O 2 • - concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods.


Subject(s)
Shock, Hemorrhagic , Animals , Swine , Shock, Hemorrhagic/metabolism , Leukocytes, Mononuclear/metabolism , Bayes Theorem , Hemorrhage , Lipids
11.
Anal Bioanal Chem ; 415(11): 2059-2070, 2023 May.
Article in English | MEDLINE | ID: mdl-36434170

ABSTRACT

Antibacterial polymer materials have gained interest due to their capability to inhibit or eradicate biofilms with greater efficiency in comparison with their monomeric counterparts. Among the antimicrobial and anti-biofouling polymers, catecholamine-based polymers - and in particular polydopamine - have been studied due to their favorable adhesion properties, which can be tuned by controlling the pH value. In this study, we used atomic force microscopy (AFM)-based spectroscopy to investigate the relation between the adhesion properties and surface charge density and the pH of electrochemically deposited polydopamine films presenting a dissociation constant of polydopamine of 6.3 ± 0.2 and a point of zero charge of 5.37 ± 0.06. Furthermore, using AFM and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), the influence of the surface charge density of polydopamine on bacterial adhesion and biofilm formation was investigated. It was shown that the adhesion of Escherichia coli at positively charged polydopamine is three times higher compared to a negatively charged polymer, and that the formation of biofilms is favored at positively charged polymers.


Subject(s)
Biofouling , Polymers , Polymers/chemistry , Biofilms , Indoles/chemistry , Bacterial Adhesion , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared/methods , Surface Properties
12.
NPJ Biofilms Microbiomes ; 8(1): 92, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402858

ABSTRACT

Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.


Subject(s)
Extracellular Polymeric Substance Matrix , Lactobacillus , Biofilms , Stainless Steel
13.
Anal Chim Acta ; 1212: 339892, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35623782

ABSTRACT

Silver-fluoropolymer (Ag-CFX) composed of encapsulated bioactive nanophases within a thin polymer coating are promising antimicrobial films with excellent bioactivity. In this contribution, we report on Ag-CFX thin films obtained by ion beam co-sputtering, accurately tuning film thickness, and inorganic loading. The Ag-CFX films were characterized by spectroscopic and scanning probe microscopy techniques with respect to composition and swelling behavior. Next to electrothermal atomic absorption spectroscopy (ETAAS) studies, scanning electrochemical microscopy (SECM) experiments in combination with anodic stripping voltammetry (ASV) were carried out to study the release mechanism of silver(I) from the embedded silver nanoparticles (AgNPs). Silver(I) concentration profiles at the Ag-CFX films in contact with water resulted in a release of 1310 ± 50 µg L-1 (n = 3) after 27 h of immersion and corresponded well to the swelling of the films. The antimicrobial properties towards biofilm formation of P. fluorescens were studied by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy during a period of 48 h. The obtained IR data revealed biofilm inhibition due to the presence of the antimicrobial layer but also indicated potential surface re-colonization after 30 h of contact with the bacteria-containing solution. The occurrence of cyclic changes in the characteristic IR bands correlated with apparent stress of bottom-layered bacteria, along with re-colonization on top of dead biomass, indicative of potential cannibalism events.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Biofilms , Metal Nanoparticles/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared
15.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: mdl-35319461

ABSTRACT

PML nuclear bodies (PML-NBs) are dynamic interchromosomal macromolecular complexes implicated in epigenetic regulation as well as antiviral defense. During herpesvirus infection, PML-NBs induce epigenetic silencing of viral genomes, however, this defense is antagonized by viral regulatory proteins such as IE1 of human cytomegalovirus (HCMV). Here, we show that PML-NBs undergo a drastic rearrangement into highly enlarged PML cages upon infection with IE1-deficient HCMV. Importantly, our results demonstrate that dual signaling by interferon and DNA damage response is required to elicit giant PML-NBs. DNA labeling revealed that invading HCMV genomes are entrapped inside PML-NBs and remain stably associated with PML cages in a transcriptionally repressed state. Intriguingly, by correlative light and transmission electron microscopy (EM), we observed that PML cages also entrap newly assembled viral capsids demonstrating a second defense layer in cells with incomplete first-line response. Further characterization by 3D EM showed that hundreds of viral capsids are tightly packed into several layers of fibrous PML. Overall, our data indicate that giant PML-NBs arise via combined interferon and DNA damage signaling which triggers entrapment of both nucleic acids and proteinaceous components. This represents a multilayered defense strategy to act in a cytoprotective manner and to combat viral infections.


Subject(s)
Interferons , Nuclear Proteins , Antiviral Agents , DNA Damage , Epigenesis, Genetic , Humans , Interferons/metabolism , Nuclear Bodies , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Transcription Factors/metabolism
16.
Annu Rev Anal Chem (Palo Alto Calif) ; 15(1): 247-267, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35259914

ABSTRACT

Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.


Subject(s)
Surface Properties , Adsorption , Microscopy, Atomic Force/methods
17.
Anal Chim Acta ; 1195: 339433, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35090654

ABSTRACT

Biofilms are a major cause of health and environmental issues. Bacteria organized in biofilms are much more resistant to biocides than their equivalents in the planktonic state. In this context, spectroscopic techniques have significantly contributed to a more fundamental understanding of biofilm formation, which is crucial to prevent and limit their generation, spreading, and maturation. In this review, recent progress on the main analytical approaches enabling the spectroscopic characterization of microbial biofilms is comparatively discussed. In addition, less commonly used techniques, facilitating biofilm studies, will be also presented. Advantages and drawbacks of each discussed technique will be underlined, thus providing an overview on spectroscopic approaches for studying biofilms.


Subject(s)
Biofilms , Disinfectants , Bacteria , Spectrum Analysis
18.
Histochem Cell Biol ; 157(4): 481-489, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34984524

ABSTRACT

High-pressure freezing followed by freeze-substitution is a valuable method for ultrastructural analyses of resin-embedded biological samples. The visualization of lipid membranes is one of the most critical aspects of any ultrastructural study and can be especially challenging in high-pressure frozen specimens. Historically, osmium tetroxide has been the preferred fixative and staining agent for lipid-containing structures in freeze-substitution solutions. However, osmium tetroxide is not only a rare and expensive material, but also volatile and toxic. Here, we introduce the use of a combination of potassium permanganate, uranyl acetate, and water in acetone as complementing reagents during the freeze-substitution process. This mix imparts an intense en bloc stain to cellular ultrastructure and membranes, which makes poststaining superfluous and is well suited for block-face imaging. Thus, potassium permanganate can effectively replace osmium tetroxide in the freeze-substitution solution without sacrificing the quality of ultrastructural preservation.


Subject(s)
Osmium Tetroxide , Potassium Permanganate , Freeze Substitution/methods , Freezing , Lipids
19.
Faraday Discuss ; 233(0): 190-205, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-34889342

ABSTRACT

Copper is the most widely used substrate for Li deposition and dissolution in lithium metal anodes, which is complicated by the formation of solid electrolyte interphases (SEIs), whose physical and chemical properties can affect Li deposition and dissolution significantly. However, initial Li nucleation and growth on bare Cu creates Li nuclei that only partially cover the Cu surface so that SEI formation could proceed not only on Li nuclei but also on the bare region of the Cu surface with different kinetics, which may affect the follow-up processes distinctively. In this paper, we employ in situ atomic force microscopy (AFM), together with X-ray photoelectron spectroscopy (XPS), to investigate how SEIs formed on a Cu surface, without Li participation, and on the surface of growing Li nuclei, with Li participation, affect the components and structures of the SEIs, and how the formation sequence of the two kinds of SEIs, along with Li deposition, affect subsequent dissolution and re-deposition processes in a pyrrolidinium-based ionic liquid electrolyte containing a small amount of water. Nanoscale in situ AFM observations show that sphere-like Li deposits may have differently conditioned SEI-shells, depending on whether Li nucleation is preceded by the formation of the SEI on Cu. Models of integrated-SEI shells and segmented-SEI shells are proposed to describe SEI shells formed on Li nuclei and SEI shells sequentially formed on Cu and then on Li nuclei, respectively. "Top-dissolution" is observed for both types of shelled Li deposits, but the integrated-SEI shells only show wrinkles, which can be recovered upon Li re-deposition, while the segmented-SEI shells are apparently top-opened due to mechanical stresses introduced at the junctions of the top regions and become "dead" SEIs, which forces subsequent Li nucleation and growth in the interstice of the dead SEIs. Our work provides insights into the impact mechanism of SEIs on the initial stage Li deposition and dissolution on foreign substrates, revealing that SEIs could be more influential on Li dissolution and that the spatial integration of SEI shells on Li deposits is important to improving the reversibility of deposition and dissolution cycling.

20.
Chem Sci ; 12(39): 12918-12927, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34745522

ABSTRACT

Despite their technological importance for water splitting, the reaction mechanisms of most water oxidation catalysts (WOCs) are poorly understood. This paper combines theoretical and experimental methods to reveal mechanistic insights into the reactivity of the highly active molecular manganese vanadium oxide WOC [Mn4V4O17(OAc)3]3- in aqueous acetonitrile solutions. Using density functional theory together with electrochemistry and IR-spectroscopy, we propose a sequential three-step activation mechanism including a one-electron oxidation of the catalyst from [Mn2 3+Mn2 4+] to [Mn3+Mn3 4+], acetate-to-water ligand exchange, and a second one-electron oxidation from [Mn3+Mn3 4+] to [Mn4 4+]. Analysis of several plausible ligand exchange pathways shows that nucleophilic attack of water molecules along the Jahn-Teller axis of the Mn3+ centers leads to significantly lower activation barriers compared with attack at Mn4+ centers. Deprotonation of one water ligand by the leaving acetate group leads to the formation of the activated species [Mn4V4O17(OAc)2(H2O)(OH)]- featuring one H2O and one OH ligand. Redox potentials based on the computed intermediates are in excellent agreement with electrochemical measurements at various solvent compositions. This intricate interplay between redox chemistry and ligand exchange controls the formation of the catalytically active species. These results provide key reactivity information essential to further study bio-inspired molecular WOCs and solid-state manganese oxide catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...