Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113515, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461442

ABSTRACT

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure opacities at varying densities and temperatures relevant to the solar interior and thermal cooling rates in white dwarf stars. The typical temperatures reached at NIF range between 150 and 210 eV, which allow these measurements to be performed experimentally. The captured opacities are crucial to validating radiation-hydrodynamic models that are used in astrophysics. The NIF opacity platform has a unique new capability that allows in situ measurement of the sample expansion. The sample expansion data are used to better understand the plasma conditions in our experiments by inferring the sample density throughout the duration of the laser drive. We present the details of the density measurement technique, data analysis, and recent results for Fe and MgO.

2.
Rev Sci Instrum ; 92(3): 033519, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33819987

ABSTRACT

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure iron opacities at varying densities and temperatures relevant to the solar interior and to verify recent experimental results obtained at the Sandia Z-machine, that diverge from theory. The first set of NIF experiments collected iron opacity data at ∼150 eV to 160 eV and an electron density of ∼7 × 1021 cm-3, with a goal to study temperatures up to ∼210 eV, with electron densities of up to ∼3 × 1022 cm-3. Among several techniques used to infer the temperature of the heated Fe sample, the absolutely calibrated DANTE-2 filtered diode array routinely provides measurements of the hohlraum conditions near the sample. However, the DANTE-2 temperatures are consistently low compared to pre-shot LASNEX simulations for a range of laser drive energies. We have re-evaluated the estimated uncertainty in the reported DANTE-2 temperatures and also the error generated by varying channel participation in the data analysis. An uncertainty of ±5% or better can be achieved with appropriate spectral coverage, channel participation, and metrology of the viewing slot.

SELECTION OF CITATIONS
SEARCH DETAIL
...