Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(31): e2222095120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487094

ABSTRACT

The locus coeruleus (LC) is a small nucleus in the pons from which ascending and descending projections innervate major parts of the central nervous system. Its major transmitter is norepinephrine (NE). This system is evolutionarily conserved, including in humans, and its functions are associated with wakefulness and related to disorders, such as depression. Here, we performed single-cell ribonucleic acid-sequencing (RNA-seq) to subdivide neurons in the LC (24 clusters in total) into 3 NE, 17 glutamate, and 5 γ-aminobutyric acid (GABA) subtypes, and to chart their neuropeptide, cotransmitter, and receptor profiles. We found that NE neurons expressed at least 19 neuropeptide transcripts, notably galanin (Gal) but not Npy, and >30 neuropeptide receptors. Among the galanin receptors, Galr1 was expressed in ~19% of NE neurons, as was also confirmed by in situ hybridization. Unexpectedly, Galr1 was highly expressed in GABA neurons surrounding the NE ensemble. Patch-clamp electrophysiology and cell-type-specific Ca2+-imaging using GCaMP6s revealed that a GalR1 agonist inhibits up to ~35% of NE neurons. This effect is direct and does not rely on feed-forward GABA inhibition. Our results define a role for the galanin system in NE functions, and a conceptual framework for the action of many other peptides and their receptors.


Subject(s)
Galanin , Peptide Hormones , Humans , Animals , Mice , Locus Coeruleus , Neurons , Glutamic Acid , Norepinephrine
2.
BBA Adv ; 3: 100081, 2023.
Article in English | MEDLINE | ID: mdl-37082260

ABSTRACT

• Spared nerve injury (SNI) altered the action potential (AP) output of lamina I spino-parabrachial neurons (SPNs) without affecting their resting potential or membrane resistance. • In one-third of SPNs, high-threshold dorsal root stimulation elicited persistent AP firing which was never observed in cells from naïve animals. • 38% of SPNs from SNI rats showed spontaneous persistent AP firing. • After SNI low- and high-output SPNs were no longer nociceptive-specific as part of them responded with APs to low-threshold stimulation. • These SNI-induced changes of SPN output might represent cellular mechanisms for neuropathy-associated allodynia, hyperalgesia, and spontaneous pain.

3.
Pain ; 163(10): 2014-2020, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35297816

ABSTRACT

ABSTRACT: Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.


Subject(s)
Gray Matter , Nociception , Action Potentials/physiology , Afferent Pathways/physiology , Excitatory Postsynaptic Potentials/physiology , Neurons , Neurons, Afferent/physiology , Nociception/physiology , Spinal Cord/physiology
SELECTION OF CITATIONS
SEARCH DETAIL