Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 20(43): 8515-8527, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36278729

ABSTRACT

Noncatalytic halogenation of adamantane (AdH) with bromine or iodine monochloride was found to proceed according to the cluster mechanism featuring high kinetic order with respect to the halogen and a sharp decrease in the calculated energy barrier when additional halogen molecules are involved in the quantum chemical system. In the reaction with Br2, 1-AdBr formed selectively. This reaction proved to be first order in terms of AdH and approximately seventh order in Br2, and its rate does not depend on the rising concentration of HBr. It was demonstrated that the reaction of AdH with ICl is sixth order in ICl, and at the first stage, 1-AdCl forms. According to kinetic data, this reaction requires 3 equivalents of ICl. The rate of 1-AdCl chlorination leading to the 1,3-di-Cl derivative turned out to be 105 times slower than that of AdH. The halogen exchange reaction of 1-AdBr with ICl yielded 1-AdCl, and this reaction is fast and is first order in ICl. Another halogen exchange reaction, AdCl + Br2 = AdBr + BrCl, proceeded much more slowly, and the equilibrium is strongly shifted to the left (equilibrium constant: 10-6). With an excess of either Br2 or ICl, adamantanol (1-AdOH) was found to enter into a slow (compared to AdH) exchange reaction producing 1-AdBr or 1-AdCl, respectively. In all the studied reactions, ICl is ∼106-fold more active than Br2. According to DFT data, the reactions of AdH with Br2 and ICl have similar rate-limiting stages, where the H atom from AdH and X atom from polarized halogen cluster X2n move toward each other forming an HX molecule and ion pair Ad+X2n-1-.

2.
Materials (Basel) ; 15(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35161066

ABSTRACT

The regularities and synthetic potentialities of the alkylation of 4(5)-nitro-1,2,3-triazole in basic media were explored, and new energetic ionic and nitrotriazole-based coordination compounds were synthesized in this study. The reaction had a general nature and ended with the formation of N1-, N2-, and N3-alkylation products, regardless of the conditions and reagent nature (alkyl- or aryl halides, alkyl nitrates, dialkyl sulfates). This reaction offers broad opportunities for expanding the variability of substituents on the nitrotriazole ring in the series of primary and secondary aliphatic, alicyclic, and aromatic substituents, which is undoubtedly crucial for solving the problems related to both high-energy materials development and medicinal chemistry when searching for new efficient bioactive compounds. An efficient methodology for the separation of regioisomeric N-alkyl(aryl)nitrotriazoles has been devised and relies on the difference in their basicity and reactivity during quaternization and complexation reactions. Based on the inaccessible N3-substitution products that exhibit a combination of properties of practical importance, a series of energy-rich ionic systems and coordination compounds were synthesized that are gaining ever-increasing interest for the chemistry of energy-efficient materials, coordination chemistry, and chemistry of ionic liquids.

SELECTION OF CITATIONS
SEARCH DETAIL
...