Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857395

ABSTRACT

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Subject(s)
Cell Differentiation , Phagocytes , Humans , Phagocytes/metabolism , Hematopoietic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Leukemia/genetics , Leukemia/pathology , Leukemia/metabolism , Protein Engineering/methods , Phagocytosis
2.
J Infect Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743812

ABSTRACT

BACKGROUND: The cell envelope of Staphylococcus aureus contains two major secondary cell wall glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Both the CP and the WTA are attached to the cell wall and play distinct roles in S. aureus colonization, pathogenesis, and bacterial evasion of host immune defenses. OBJECTIVE: We aimed to investigate whether CP interferes with WTA-mediated properties. METHODS: Strains with natural heterogeneous expression of CP, strains with homogeneous high CP expression and CP-deficient strains were compared to WTA deficient controls regarding WTA dependent phage binding, cell adhesion, IgG deposition, and virulence in vivo. RESULTS: WTA-mediated phage adsorption, specific antibody deposition and cell adhesion were negatively correlated with CP expression. WTA, but not CP, enhanced the bacterial burden in a mouse abscess model, while CP overexpression resulted in intermediate virulence in vivo. CONCLUSIONS: CP protects the bacteria from WTA-dependent opsonization and phage binding. This protection comes at the cost of diminished adhesion to host cells. The highly complex regulation and mostly heterogeneous expression of CP has probably evolved to ensure the survival and optimal physiological adaptation of the bacterial population as a whole.

3.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553595

ABSTRACT

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Cyclophilin A/genetics , Cyclophilin A/metabolism , RNA-Binding Proteins , Hematopoietic Stem Cells/metabolism
4.
PLoS One ; 18(11): e0287725, 2023.
Article in English | MEDLINE | ID: mdl-37971979

ABSTRACT

The SARS-CoV-2 pandemic has affected nations globally leading to illness, death, and economic downturn. Why disease severity, ranging from no symptoms to the requirement for extracorporeal membrane oxygenation, varies between patients is still incompletely understood. Consequently, we aimed at understanding the impact of genetic factors on disease severity in infection with SARS-CoV-2. Here, we provide data on demographics, ABO blood group, human leukocyte antigen (HLA) type, as well as next-generation sequencing data of genes in the natural killer cell receptor family, the renin-angiotensin-aldosterone and kallikrein-kinin systems and others in 159 patients with SARS-CoV-2 infection, stratified into seven categories of disease severity. We provide single-nucleotide polymorphism (SNP) data on the patients and a protein structural analysis as a case study on a SNP in the SIGLEC7 gene, which was significantly associated with the clinical score. Our data represent a resource for correlation analyses involving genetic factors and disease severity and may help predict outcomes in infections with future SARS-CoV-2 variants and aid vaccine adaptation.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide , Angiotensins
5.
Leukemia ; 37(12): 2367-2382, 2023 12.
Article in English | MEDLINE | ID: mdl-37935978

ABSTRACT

High metabolic flexibility is pivotal for the persistence and therapy resistance of acute myeloid leukemia (AML). In 20-30% of AML patients, activating mutations of FLT3, specifically FLT3-ITD, are key therapeutic targets. Here, we investigated the influence of FLT3-ITD on AML metabolism. Nuclear Magnetic Resonance (NMR) profiling showed enhanced reshuffling of pyruvate towards the tricarboxylic acid (TCA) cycle, suggesting an increased activity of the pyruvate dehydrogenase complex (PDC). Consistently, FLT3-ITD-positive cells expressed high levels of PDP1, an activator of the PDC. Combining endogenous tagging of PDP1 with genome-wide CRISPR screens revealed that FLT3-ITD induces PDP1 expression through the RAS signaling axis. PDP1 knockdown resulted in reduced cellular respiration thereby impairing the proliferation of only FLT3-ITD cells. These cells continued to depend on PDP1, even in hypoxic conditions, and unlike FLT3-ITD-negative cells, they exhibited a rapid, PDP1-dependent revival of their respiratory capacity during reoxygenation. Moreover, we show that PDP1 modifies the response to FLT3 inhibition. Upon incubation with the FLT3 tyrosine kinase inhibitor quizartinib (AC220), PDP1 persisted or was upregulated, resulting in a further shift of glucose/pyruvate metabolism towards the TCA cycle. Overexpression of PDP1 enhanced, while PDP1 depletion diminished AC220 resistance in cell lines and peripheral blasts from an AC220-resistant AML patient in vivo. In conclusion, FLT3-ITD assures the expression of PDP1, a pivotal metabolic regulator that enhances oxidative glucose metabolism and drug resistance. Hence, PDP1 emerges as a potentially targetable vulnerability in the management of AML.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Pyruvates/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/therapeutic use
6.
Nat Commun ; 14(1): 6242, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37802982

ABSTRACT

Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, ß-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Calcium-Sensing , Humans , Receptors, Calcium-Sensing/genetics , Proto-Oncogene Proteins c-myc , Calcium , Oncogene Proteins, Fusion/metabolism , Signal Transduction , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Cytarabine , Tumor Microenvironment
7.
Neuroimage Clin ; 37: 103330, 2023.
Article in English | MEDLINE | ID: mdl-36696807

ABSTRACT

INTRODUCTION: Persistent postural-perceptual dizziness (PPPD) (ICD-11) and anxiety disorders (ANX) share behavioural symptoms like anxiety, avoidance, social withdrawal, hyperarousal, or palpitation as well as neurological symptoms like vertigo, stance and gait disorders. Furthermore, previous studies have shown a bidirectional link between vestibulo-spatial and anxiety neural networks. So far, there have been no neuroimaging-studies comparing these groups. OBJECTIVES: The aim of this explorative study was to investigate differences and similarities of neural correlates between these two patient groups and to compare their findings with a healthy control group. METHODS: 63 participants, divided in two patient groups (ANX = 20 and PPPD = 14) and two sex and age matched healthy control groups (HC-A = 16, HC-P = 13) were included. Anxiety and dizziness related pictures were shown during fMRI-measurements in a block-design in order to induce emotional responses. All subjects filled in questionnaires regarding vertigo (VSS, VHQ), anxiety (STAI), depression (BDI-II), alexithymia (TAS), and illness-perception (IPQ). After modelling the BOLD response with a standard canonical HRF, voxel-wise t-tests between conditions (emotional-negative vs neutral stimuli) were used to generate statistical contrast maps and identify relevant brain areas (pFDR < 0.05, cluster size >30 voxels). ROI-analyses were performed for amygdala, cingulate gyrus, hippocampus, inferior frontal gyrus, insula, supramarginal gyrus and thalamus (p ≤ 0.05). RESULTS: Patient groups differed from both HC groups regarding anxiety, dizziness, depression and alexithymia scores; ratings of the PPPD group and the ANX group did differ significantly only in the VSS subscale 'vertigo and related symptoms' (VSS-VER). The PPPD group showed increased neural responses in the vestibulo-spatial network, especially in the supramarginal gyrus (SMG), and superior temporal gyrus (STG), compared to ANX and HC-P group. The PPPD group showed increased neural responses compared to the HC-P group in the anxiety network including amygdala, insula, lentiform gyrus, hippocampus, inferior frontal gyrus (IFG) and brainstem. Neuronal responses were enhanced in visual structures, e.g. fusiform gyrus, middle occipital gyrus, and in the medial orbitofrontal cortex (mOFC) in healthy controls compared to patients with ANX and PPPD, and in the ANX group compared to the PPPD group. CONCLUSIONS: These findings indicate that neuronal responses to emotional information in the PPPD and the ANX group are comparable in anxiety networks but not in vestibulo-spatial networks. Patients with PPPD revealed a stronger neuronal response especially in SMG and STG compared to the ANX and the HC group. These results might suggest higher sensitivity and poorer adaptation processes in the PPPD group to anxiety and dizziness related pictures. Stronger activation in visual processing areas in HC subjects might be due to less emotional and more visual processing strategies.


Subject(s)
Dizziness , Vertigo , Humans , Dizziness/diagnostic imaging , Vertigo/diagnostic imaging , Brain/diagnostic imaging , Anxiety Disorders/diagnostic imaging , Cerebral Cortex , Anxiety/diagnostic imaging
8.
Exp Clin Psychopharmacol ; 31(1): 219-227, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35604719

ABSTRACT

The status of remission in patients with major depressive disorder treated with selective serotonin reuptake inhibitors (SSRIs) is mostly evaluated with clinical rating scales. Morphological correlates of the remission status remain a rare event. Addressing this challenge, we investigated functional correlates of remission by assessment of serotonin and dopamine transporter availability (SERT and DAT) using single-photon emission computed tomography (SPECT). Our purpose was to identify changes in the SERT/DAT binding potential in accordance with the clinical improvement. Nineteen drug-naïve patients with a Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) diagnosis of major depression were included. [¹²³I]2ß-carbomethoxy-3ß-(4-iodophenyl)tropane(ß-CIT) SPECT was obtained from each participant before (baseline) and after 6 weeks (follow-up) of standardized treatment with escitalopram. The [¹²³I]ß-CIT-SPECT recordings were acquired 4 hr (SERT-weighted) and 20-24 hr p.i (DAT-weighted), and binding potentials (˜BPND: baseline, follow-up, and rate of change) were calculated for thalamus, midbrain, pons (SERT), and striatum (DAT). From all study participants, neuropsychiatric symptoms were assessed using Hamilton depression (HAM-D) and Beck Depression Inventory scores. At follow-up, patients were divided into responders and nonresponders (as well as remitters and nonremitters). Compared to nonremitted, remitted patients showed over the course of 6 weeks a significantly higher loss of SERT binding potential in the thalamus (p = .036) and in the midbrain (p = .019). Additionally, the correlation of HAM-D with SERT binding potential in the thalamus showed a trend toward significance (p = .057) with higher HAM-D scores (at baseline) leading to lower SERT binding potential. No significant associations were identified for the analysis of baseline prediction of therapy response with SERT and DAT. Our results suggest that patients who remit from their depressive symptoms under escitalopram are characterized by stronger decreases of SERT, indicating that escitalopram blocking of SERT leads to clinical improvement. Therefore, this study shows that measuring SERT availability with SPECT could be an efficient and applicable technique to illustrate a possible underlying pathophysiology of symptom remission in response to treatment. In addition, the present results could help to stimulate new treatment approaches based on SERT and DAT binding. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depressive Disorder, Major/metabolism , Escitalopram , Prospective Studies , Tomography, Emission-Computed, Single-Photon/methods , Serotonin Plasma Membrane Transport Proteins/metabolism , Brain
9.
Blood Adv ; 7(7): 1190-1203, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36044386

ABSTRACT

Leukemia cells reciprocally interact with their surrounding bone marrow microenvironment (BMM), rendering it hospitable to leukemia cell survival, for instance through the release of small extracellular vesicles (sEVs). In contrast, we show here that BMM deficiency of pleckstrin homology domain family M member 1 (PLEKHM1), which serves as a hub between fusion and secretion of intracellular vesicles and is important for vesicular secretion in osteoclasts, accelerates murine BCR-ABL1+ B-cell acute lymphoblastic leukemia (B-ALL) via regulation of the cargo of sEVs released by BMM-derived mesenchymal stromal cells (MSCs). PLEKHM1-deficient MSCs and their sEVs carry increased amounts of syntenin and syndecan-1, resulting in a more immature B-cell phenotype and an increased number/function of leukemia-initiating cells (LICs) via focal adhesion kinase and AKT signaling in B-ALL cells. Ex vivo pretreatment of LICs with sEVs derived from PLEKHM1-deficient MSCs led to a strong trend toward acceleration of murine and human BCR-ABL1+ B-ALL. In turn, inflammatory mediators such as recombinant or B-ALL cell-derived tumor necrosis factor α or interleukin-1ß condition murine and human MSCs in vitro, decreasing PLEKHM1, while increasing syntenin and syndecan-1 in MSCs, thereby perpetuating the sEV-associated circuit. Consistently, human trephine biopsies of patients with B-ALL showed a reduced percentage of PLEKHM1+ MSCs. In summary, our data reveal an important role of BMM-derived sEVs for driving specifically BCR-ABL1+ B-ALL, possibly contributing to its worse prognosis compared with BCR-ABL1- B-ALL, and suggest that secretion of inflammatory cytokines by cancer cells in general may similarly modulate the tumor microenvironment.


Subject(s)
Burkitt Lymphoma , Mesenchymal Stem Cells , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Syndecan-1/metabolism , Syntenins/metabolism , Cell Communication , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Burkitt Lymphoma/pathology , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment
10.
Mol Cell ; 82(24): 4588-4590, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36525954

ABSTRACT

Chai et al.1 reveal that the eukaryotic-like effector protein PtpB from Mycobacterium tuberculosis (MTB) dephosphorylates phospholipid membrane proteins, which prevents membrane localization of cleaved gasdermin D, inhibiting pyroptosis and cytokine release by infected macrophages to enable MTB immune evasion.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Pyroptosis , Ubiquitin/metabolism , Macrophages/metabolism , Cytokines/metabolism
11.
World J Psychiatry ; 12(7): 944-957, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-36051595

ABSTRACT

BACKGROUND: The rising number of people using methamphetamine leads to an increasing need for treatment options for this patient group. Evidence-based research on the efficacy of treatment programs for methamphetamine users is limited. Due to specific characteristics of methamphetamine users, the question arises whether established treatment methods for individuals using other substances can be effective for the treatment of methamphetamine dependence as well. We hypothesize that there are significant differences between the two groups that may affect the effectiveness of treatment and worsen the prognosis of treatment outcomes for methamphetamine users compared to consumers of other substances. AIM: To investigate potential differences in cognitive functioning and psychopathology between methamphetamine users and other substance users and possible correlations with treatment outcomes. METHODS: A total of 110 subjects were recruited for an observational, longitudinal study from a German inpatient addiction treatment center: 55 patients with methamphetamine dependence and 55 patients with dependence of other substances ("OS group"). Both groups were examined at beginning (baseline) and end of treatment (after 6 mo) with regard to treatment retention, craving, cognitive functioning, psychosocial resources, personality traits, depression, and other psychiatric symptoms. Instruments used were Raven's IQ test, Mannheimer craving scale, cognitrone cognitive test battery, NEO personality factors inventory, Hamilton depression scale, Becks depression inventory, and a symptom checklist. The statistical methods used were χ 2-test, t-test and multiple mixed ANOVAs. RESULTS: A total drop-out rate of 40% (methamphetamine-group: 36.4%; OS-group: 43.6%) was observed without significant differences between groups. At baseline, methamphetamine-group subjects significantly differed from OS-group individuals in terms of a lower intelligence quotient, fewer years of education, slower working speed, and decreased working accuracy, as well as less cannabinoid and cocaine use. Methamphetamine-group subjects further showed a significantly lower score of conscientiousness, depressive, and psychiatric symptoms than subjects from the OS-group. In both groups, a reduction of craving and depressive symptoms and an improvement of working speed and working accuracy was noted after treatment. CONCLUSION: There are differences between methamphetamine users and users of other drugs, but not with regard to the effectiveness of treatment in this inpatient setting. There are differences in cognitive function and psychopathology between methamphetamine and other drugs users. The existing treatment options seem to be an effective approach in treating methamphetamine dependence.

13.
Blood Adv ; 6(12): 3611-3624, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35298613

ABSTRACT

Lipid raft-associated proteins play a vital role in membrane-mediated processes. The lipid microdomain-associated protein flotillin 2 (FLOT2), which has a scaffolding function, is involved in polarization, as well as in actin cytoskeletal organization of primitive and mature hematopoietic cells and has been associated with different malignancies. However, its involvement in myeloid leukemias is not well studied. Using murine transplantation models, we show here that the absence of FLOT2 from leukemia-initiating cells (LICs) altered the disease course of BCR-ABL1+ chronic myeloid leukemia (CML), but not of MLL-AF9-driven acute myeloid leukemia (AML). While FLOT2 was required for expression of the adhesion molecule CD44 on both CML- and AML-LIC, a defect in the cytoskeleton, cell polarity, and impaired homing ability of LIC was only observed in FLOT2-deficient BCR-ABL1+ compared with MLL-AF9+ cells. Downstream of CD44, BCR-ABL1 kinase-independent discrepancies were observed regarding expression, localization, and activity of cell division control protein 42 homolog (CDC42) between wild-type (WT) and FLOT2-deficient human CML and AML cells. Inhibition of CDC42 by ML141 impaired the homing of CML LIC and, thereby, CML progression. This suggested that alteration of both CD44 and CDC42 may be causative of impaired CML progression in the absence of FLOT2. In summary, our data suggest a FLOT2-CD44-CDC42 axis, which differentially regulates CML vs AML progression, with deficiency of FLOT2 impairing the development of CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid, Acute , Animals , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice
14.
Eur Arch Psychiatry Clin Neurosci ; 272(4): 557-569, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34622344

ABSTRACT

Identifying treatment options for patients with alcohol dependence is challenging. This study investigates the application of real-time functional MRI (rtfMRI) neurofeedback (NF) to foster resistance towards craving-related neural activation in alcohol dependence. We report a double-blind, placebo-controlled rtfMRI study with three NF sessions using alcohol-associated cues as an add-on therapy to the standard treatment. Fifty-two patients (45 male; 7 female) diagnosed with alcohol dependence were recruited in Munich, Germany. RtfMRI data were acquired in three sessions and clinical abstinence was evaluated 3 months after the last NF session. Before the NF training, BOLD responses and clinical data did not differ between groups, apart from anger and impulsiveness. During NF training, BOLD responses of the active group were decreased in medial frontal areas/caudate nucleus, and increased, e.g. in the cuneus/precuneus and occipital cortex. Within the active group, the down-regulation of neuronal responses was more pronounced in patients who remained abstinent for at least 3 months after the intervention compared to patients with a relapse. As BOLD responses were comparable between groups before the NF training, functional variations during NF cannot be attributed to preexisting distinctions. We could not demonstrate that rtfMRI as an add-on treatment in patients with alcohol dependence leads to clinically superior abstinence for the active NF group after 3 months. However, the study provides evidence for a targeted modulation of addiction-associated brain responses in alcohol dependence using rtfMRI.


Subject(s)
Alcoholism , Neurofeedback , Alcoholism/diagnostic imaging , Alcoholism/therapy , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Pilot Projects
16.
Blood ; 138(12): 1007-1008, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34554221
17.
Blood ; 138(19): 1870-1884, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34424946

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) occurs most commonly in children, whereas chronic myeloid leukemia is more frequent in adults. The myeloid bias of hematopoiesis in elderly individuals has been considered causative, but the age of the bone marrow microenvironment (BMM) may be contributory. Using various murine models of B-ALL in young vs old mice, we recapitulated B-ALL preponderance in children vs adults. We showed differential effects of young vs old BM macrophages on B-ALL cell function. Molecular profiling using RNA- and ATAC-sequencing revealed pronounced differences in young vs old BMM-derived macrophages and enrichment for gene sets associated with inflammation. In concordance with the role of C-X-C motif chemokine (CXCL) 13 for disease-associated B-cell chemoattraction, we found CXCL13 to be highly expressed in young macrophages on a translational compared with a transcriptional level. Inhibition of CXCL13 in BM macrophages impaired leukemia cell migration and decreased the proliferation of cocultured B-ALL cells, whereas recombinant CXCL13 increased pAKT and B-ALL cell expansion. Pretreatment of B-ALL-initiating cells with CXCL13 accelerated B-ALL progression. Deficiency of Cxcr5, the receptor for CXCL13, on B-ALL-initiating cells prolonged murine survival, whereas high expression of CXCR5 in pediatric B-ALL may predict central nervous system relapse. CXCL13 staining was increased in bone sections from pediatric compared with adult patients with B-ALL. Taken together, our study shows that the age of the BMM and, in particular, BM macrophages influence the leukemia phenotype. The CXCR5-CXCL13 axis may act as prognostic marker and an attractive novel target for the treatment of B-ALL.


Subject(s)
Chemokine CXCL13/genetics , Gene Expression Regulation, Leukemic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, CXCR5/genetics , Tumor Microenvironment , Aging , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Line, Tumor , Disease Progression , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
18.
Front Public Health ; 9: 640154, 2021.
Article in English | MEDLINE | ID: mdl-34164365

ABSTRACT

Introduction: Pharmacological neuroenhancement (PN) is a topic of increasing importance and prevalence among students. However, there is a lack of differentiating PN substances, according to their psychoactive effects. In particular, there is a lack of data about PN by caffeinated drinks, even if coffee is a common and broadly used Neuroenhancer because of its cognitively enhancing effects regarding wakefulness, alertness and concentration. Materials and Methods: A web-survey was developed for German students and alumni about the non-medical use of caffeine for PN contained questions about coffee, caffeinated drinks and energy drinks, caffeine pills and methylxanthine tea regarding frequency and further contextual factors. Results: Six hundred and eighty-three participants completed the survey. Nearly all participants knew about PN (97.7%). 88.1% admitted using some over-the-counter substances. For PN purposes, coffee was used by 72.9% followed by energy drinks (68.2%) and cola drinks (62.4%). Methylxanthine containing tea was used for PN purposes, too (black tea 52.3%, green tea 51.7%). 1.8% admitted using illegal substances or prescription drugs, too. Discussion: Using legal methylxanthine containing drinks for PN seems to be extremely common with coffee and energy drinks being the preferred substances, while illegal and prescription drugs are only minimally used. Further studies should investigate the awareness of methylxanthine containing drinks as well as its character to be a flavoring drink or a neuroenhancer.


Subject(s)
Central Nervous System Stimulants , Energy Drinks , Caffeine/analysis , Coffee , Energy Drinks/adverse effects , Humans , Tea
19.
Fac Rev ; 10: 35, 2021.
Article in English | MEDLINE | ID: mdl-33977288

ABSTRACT

While the need for complete eradication of leukemic stem cells (LSCs) in chronic myeloid leukemia may be controversial, it is agreed that remaining LSCs are the cause of relapse and disease progression. Current efforts are focused on the understanding of the persistence of immunophenotypically defined LSCs, which feature abnormalities in signaling pathways relating to autophagy, metabolism, epigenetics, and others and are influenced by leukemia cell-extrinsic factors such as the immune and bone marrow microenvironments. In sum, these elements modulate response and resistance to therapies and the clinical condition of treatment-free remission (TFR), the newly established goal in CML treatment, once the patient has achieved a durable molecular remission after treatment with tyrosine kinase inhibitors. Novel combination therapies based on these identified vulnerabilities of LSCs, aimed at the induction or maintenance of TFR, are being developed, while other research is directed at the elucidation of factors mediating progression to blast crisis.

20.
FEBS Lett ; 595(7): 864-880, 2021 04.
Article in English | MEDLINE | ID: mdl-33452816

ABSTRACT

The lysosome is a cellular signalling hub at the point of convergence of endocytic and autophagic pathways, where the contents are degraded and recycled. Pleckstrin homology domain-containing family member 1 (PLEKHM1) acts as an adaptor to facilitate the fusion of endocytic and autophagic vesicles with the lysosome. However, it is unclear how PLEKHM1 function at the lysosome is controlled. Herein, we show that PLEKHM1 coprecipitates with, and is directly phosphorylated by, mTOR. Using a phosphospecific antibody against Ser432/S435 of PLEKHM1, we show that the same motif is a direct target for ERK2-mediated phosphorylation in a growth factor-dependent manner. This dual regulation of PLEKHM1 at a highly conserved region points to a convergence of both growth factor- and amino acid-sensing pathways, placing PLEKHM1 at a critical juncture of cellular metabolism.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Proteins/genetics , Lysosomes/genetics , Mitogen-Activated Protein Kinase 1/genetics , TOR Serine-Threonine Kinases/genetics , Autophagy/genetics , Endosomes/genetics , HeLa Cells , Humans , Phosphorylation/genetics , Protein Binding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...