Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Thorax ; 78(6): 551-558, 2023 06.
Article in English | MEDLINE | ID: mdl-35534152

ABSTRACT

BACKGROUND: Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes. METHODS: We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases). FINDINGS: We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10-5). INTERPRETATION: We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Transcriptome , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Gene Expression Profiling , Cluster Analysis , Biomarkers
3.
EBioMedicine ; 86: 104356, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36413936

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung parenchyma. It has a known polygenetic risk, with at least seventeen regions of the genome implicated to date. Growing evidence suggests linked multimorbidity of IPF with neurodegenerative or affective disorders. However, no study so far has explicitly explored links between IPF, associated genetic risk profiles, and specific brain features. METHODS: We exploited imaging and genetic data from more than 32,000 participants available through the UK Biobank population-level resource to explore links between IPF genetic risk and imaging-derived brain endophenotypes. We performed a brain-wide imaging-genetics association study between the presence of 17 known IPF risk variants and 1248 multi-modal imaging-derived features, which characterise brain structure and function. FINDINGS: We identified strong associations between cortical morphological features, white matter microstructure and IPF risk loci in chromosomes 17 (17q21.31) and 8 (DEPTOR). Through co-localisation analysis, we confirmed that cortical thickness in the anterior cingulate and more widespread white matter microstructure changes share a single causal variant with IPF at the chromosome 8 locus. Post-hoc preliminary analysis suggested that forced vital capacity may partially mediate the association between the DEPTOR variant and white matter microstructure, but not between the DEPTOR risk variant and cortical thickness. INTERPRETATION: Our results reveal the associations between IPF genetic risk and differences in brain structure, for both cortex and white matter. Differences in tissue-specific imaging signatures suggest distinct underlying mechanisms with focal cortical thinning in regions with known high DEPTOR expression, unrelated to lung function, and more widespread microstructural white matter changes consistent with hypoxia or neuroinflammation with potential mediation by lung function. FUNDING: This study was supported by the NIHR Nottingham Biomedical Research Centre and the UK Medical Research Council.


Subject(s)
Endophenotypes , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Lung/diagnostic imaging , Risk Factors , Brain/diagnostic imaging , Intracellular Signaling Peptides and Proteins/genetics
4.
Lancet Digit Health ; 4(12): e862-e872, 2022 12.
Article in English | MEDLINE | ID: mdl-36333179

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with a variable clinical trajectory. Decline in forced vital capacity (FVC) is the main indicator of progression; however, missingness prevents long-term analysis of patterns in lung function. We aimed to identify distinct clusters of lung function trajectory among patients with idiopathic pulmonary fibrosis using machine learning techniques. METHODS: We did a secondary analysis of longitudinal data on FVC collected from a cohort of patients with idiopathic pulmonary fibrosis from the PROFILE study; a multicentre, prospective, observational cohort study. We evaluated the imputation performance of conventional and machine learning techniques to impute missing data and then analysed the fully imputed dataset by unsupervised clustering using self-organising maps. We compared anthropometric features, genomic associations, serum biomarkers, and clinical outcomes between clusters. We also performed a replication of the analysis on data from a cohort of patients with idiopathic pulmonary fibrosis from an independent dataset, obtained from the Chicago Consortium. FINDINGS: 415 (71%) of 581 participants recruited into the PROFILE study were eligible for further analysis. An unsupervised machine learning algorithm had the lowest imputation error among tested methods, and self-organising maps identified four distinct clusters (1-4), which was confirmed by sensitivity analysis. Cluster 1 comprised 140 (34%) participants and was associated with a disease trajectory showing a linear decline in FVC over 3 years. Cluster 2 comprised 100 (24%) participants and was associated with a trajectory showing an initial improvement in FVC before subsequently decreasing. Cluster 3 comprised 113 (27%) participants and was associated with a trajectory showing an initial decline in FVC before subsequent stabilisation. Cluster 4 comprised 62 (15%) participants and was associated with a trajectory showing stable lung function. Median survival was shortest in cluster 1 (2·87 years [IQR 2·29-3·40]) and cluster 3 (2·23 years [1·75-3·84]), followed by cluster 2 (4·74 years [3·96-5·73]), and was longest in cluster 4 (5·56 years [5·18-6·62]). Baseline FEV1 to FVC ratio and concentrations of the biomarker SP-D were significantly higher in clusters 1 and 3. Similar lung function clusters with some shared anthropometric features were identified in the replication cohort. INTERPRETATION: Using a data-driven unsupervised approach, we identified four clusters of lung function trajectory with distinct clinical and biochemical features. Enriching or stratifying longitudinal spirometric data into clusters might optimise evaluation of intervention efficacy during clinical trials and patient management. FUNDING: National Institute for Health and Care Research, Medical Research Council, and GlaxoSmithKline.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Prospective Studies , Vital Capacity , Cohort Studies , Biomarkers
6.
EBioMedicine ; 65: 103277, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33714028

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease, characterized by progressive lung scarring. Severe COVID-19 is associated with substantial pneumonitis and has a number of shared major risk factors with IPF. This study aimed to determine the genetic correlation between IPF and severe COVID-19 and assess a potential causal role of genetically increased risk of IPF on COVID-19 severity. METHODS: The genetic correlation between IPF and COVID-19 severity was estimated with linkage disequilibrium (LD) score regression. We performed a Mendelian randomization (MR) study for IPF causality in COVID-19. Genetic variants associated with IPF susceptibility (P<5 × 10-8) in previous genome-wide association studies (GWAS) were used as instrumental variables (IVs). Effect estimates of those IVs on COVID-19 severity were gathered from the GWAS meta-analysis by the COVID-19 Host Genetics Initiative (4,336 cases & 623,902 controls). FINDINGS: We detected a positive genetic correlation of IPF with COVID-19 severity (rg=0·31 [95% CI 0·04-0·57], P = 0·023). The MR estimates for severe COVID-19 did not reveal any genetic association (OR 1·05, [95% CI 0·92-1·20], P = 0·43). However, outlier analysis revealed that the IPF risk allele rs35705950 at MUC5B had a different effect compared with the other variants. When rs35705950 was excluded, MR results provided evidence that genetically increased risk of IPF has a causal effect on COVID-19 severity (OR 1·21, [95% CI 1·06-1·38], P = 4·24 × 10-3). Furthermore, the IPF risk-allele at MUC5B showed an apparent protective effect against COVID-19 hospitalization only in older adults (OR 0·86, [95% CI 0·73-1·00], P = 2·99 × 10-2) . INTERPRETATION: The strongest genetic determinant of IPF, rs35705950 at MUC5B, seems to confer protection against COVID-19, whereas the combined effect of all other IPF risk loci seem to confer risk of COVID-19 severity. The observed effect of rs35705950 could either be due to protective effects of mucin over-production on the airways or a consequence of selection bias due to (1) a patient group that is heavily enriched for the rs35705950 T undertaking strict self-isolation and/or (2) due to survival bias of the rs35705950 non-IPF risk allele carriers. Due to the diverse impact of IPF causal variants on SARS-CoV-2 infection, with a possible selection bias as an explanation, further investigation is needed to address this apparent paradox between variance at MUC5B and other IPF genetic risk factors. FUNDING: Novo Nordisk Foundation and Oak Foundation.


Subject(s)
COVID-19/pathology , Genetic Predisposition to Disease/genetics , Idiopathic Pulmonary Fibrosis/pathology , COVID-19/genetics , Genome-Wide Association Study , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung/pathology , Mucin-5B/genetics , Polymorphism, Single Nucleotide/genetics , Risk , SARS-CoV-2 , Severity of Illness Index
7.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31710517

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Aged , Case-Control Studies , Cell Cycle Proteins/genetics , Female , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kinesins/genetics , Male , Middle Aged , Risk Assessment , Signal Transduction , Spindle Apparatus , TOR Serine-Threonine Kinases/metabolism
8.
J Trauma Acute Care Surg ; 85(3): 620-625, 2018 09.
Article in English | MEDLINE | ID: mdl-29847536

ABSTRACT

BACKGROUND: The management of trauma patients has changed radically in the last decade, and studies have shown overall improvements in survival. However, reduction in mortality for the many may obscure a lack of progress in some high-risk patients. We sought to examine the outcomes for hypotensive patients requiring laparotomy in UK military and civilian cohorts. METHODS: We undertook a review of two prospectively maintained trauma databases: the UK Joint Theatre Trauma Registry for the military cohort (February 4, 2003, to September 21, 2014) and the trauma registry of the Royal London Hospital major trauma center (January 1, 2012, to January 1, 2017) for civilian patients. Adults undergoing trauma laparotomy within 90 minutes of arrival at the emergency department (ED) were included. RESULTS: Hypotension was present on arrival at the ED in 155 (20.4%) of 761 military patients. Mortality was higher in hypotensive casualties (25.8% vs. 9.7% in normotensive casualties; p < 0.001). Hypotension was present on arrival at the ED in 63 (35.7%) of 176 civilian patients. Mortality was higher in hypotensive patients (47.6% vs. 12.4% in normotensive patients; p < 0.001). In both cohorts of hypotensive patients, neither the average injury severity, the prehospital time, the ED arrival systolic blood pressure, nor mortality rate changed significantly during the study period. CONCLUSIONS: Despite improvements in survival after trauma for patients overall, the mortality for patients undergoing laparotomy who arrive at the ED with hypotension has not changed and appears stubbornly resistant to all efforts. Specific enquiry and research should continue to be directed at this high-risk group of patients. LEVEL OF EVIDENCE: Prognostic/Epidemiologic, level IV.


Subject(s)
Hypotension/surgery , Laparotomy/methods , Wounds and Injuries/surgery , Adolescent , Adult , Emergencies , Emergency Service, Hospital , Female , Humans , Hypotension/epidemiology , Hypotension/mortality , Injury Severity Score , Male , Military Personnel , Prospective Studies , Resuscitation/methods , Time Factors , Trauma Centers/statistics & numerical data , United Kingdom/epidemiology , Wounds and Injuries/epidemiology , Wounds and Injuries/mortality , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...