Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
JMIR Hum Factors ; 10: e41552, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37603400

ABSTRACT

BACKGROUND: Electronic health record (EHR) data from multiple providers often exhibit important but convoluted and complex patterns that patients find hard and time-consuming to identify and interpret. However, existing patient-facing applications lack the capability to incorporate automatic pattern detection robustly and toward supporting making sense of the patient's EHR data. In addition, there is no means to organize EHR data in an efficient way that suits the patient's needs and makes them more actionable in real-life settings. These shortcomings often result in a skewed and incomplete picture of the patient's health status, which may lead to suboptimal decision-making and actions that put the patient at risk. OBJECTIVE: Our main goal was to investigate patients' attitudes, needs, and use scenarios with respect to automatic support for surfacing important patterns in their EHR data and providing means for organizing them that best suit patients' needs. METHODS: We conducted an inquisitive research-through-design study with 14 participants. Presented in the context of a cutting-edge application with strong emphasis on independent EHR data sensemaking, called Discovery, we used high-level mock-ups for the new features that were supposed to support automatic identification of important data patterns and offer recommendations-Alerts-and means for organizing the medical records based on patients' needs, much like photos in albums-Collections. The combined audio recording transcripts and in-study notes were analyzed using the reflexive thematic analysis approach. RESULTS: The Alerts and Collections can be used for raising awareness, reflection, planning, and especially evidence-based patient-provider communication. Moreover, patients desired carefully designed automatic pattern detection with safe and actionable recommendations, which produced a well-tailored and scoped landscape of alerts for both potential threats and positive progress. Furthermore, patients wanted to contribute their own data (eg, progress notes) and log feelings, daily observations, and measurements to enrich the meaning and enable easier sensemaking of the alerts and collections. On the basis of the findings, we renamed Alerts to Reports for a more neutral tone and offered design implications for contextualizing the reports more deeply for increased actionability; automatically generating the collections for more expedited and exhaustive organization of the EHR data; enabling patient-generated data input in various formats to support coarser organization, richer pattern detection, and learning from experience; and using the reports and collections for efficient, reliable, and common-ground patient-provider communication. CONCLUSIONS: Patients need to have a flexible and rich way to organize and annotate their EHR data; be introduced to insights from these data-both positive and negative; and share these artifacts with their physicians in clinical visits or via messaging for establishing shared mental models for clear goals, agreed-upon priorities, and feasible actions.

2.
JMIR Form Res ; 7: e41346, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37010887

ABSTRACT

BACKGROUND: In the United States, patients can access their electronic health record (EHR) data through patient portals. However, current patient portals are mainly focused on a single provider, with very limited data sharing capabilities and put low emphasis on independent sensemaking of the EHR data. This makes it very challenging for patients to switch between different portals and aggregate the data to obtain a complete picture of their medical history and to make sense of it. Owing to this fragmentation, patients are exposed to numerous inconveniences such as medical errors, repeated tests, and limited self-advocacy. OBJECTIVE: To overcome the limitations of EHR patient portals, we designed and developed Discovery-a web-based application that aggregates EHR data from multiple providers and present them to the patient for efficient exploration and sensemaking. To learn how well Discovery meets the patients' sensemaking needs and what features should such applications include, we conducted an evaluation study. METHODS: We conducted a remote study with 14 participants. In a 60-minute session and relying on the think-aloud protocol, participants were asked to complete a variety of sensemaking tasks and provide feedback upon completion. The audio materials were transcribed for analysis and the video recordings of the users' interactions with Discovery were annotated to provide additional context. These combined textual data were thematically analyzed to surface themes that reflect how participants used Discovery's features, what sensemaking of their EHR data really entails, and what features are desirable to support that process better. RESULTS: We found that Discovery provided much needed features and could be used in a variety of everyday scenarios, especially for preparing and during clinical visits and also for raising awareness, reflection, and planning. According to the study participants, Discovery provided a robust set of features for supporting independent exploration and sensemaking of their EHR data: summary and quick overview of the data, finding prevalence, periodicity, co-occurrence, and pre-post of medical events, as well as comparing medical record types and subtypes across providers. In addition, we extracted important design implications from the user feedback on data exploration with multiple views and nonstandard user interface elements. CONCLUSIONS: Patient-centered sensemaking tools should have a core set of features that can be learned quickly and support common use cases for a variety of users. The patients should be able to detect time-oriented patterns of medical events and get enough context and explanation on demand in a single exploration view that feels warm and familiar and relies on patient-friendly language. However, this view should have enough plasticity to adjust to the patient's information needs as the sensemaking unfolds. Future designs should include the physicians in the patient's sensemaking process and improve the communication in clinical visits and via messaging.

3.
Synth Syst Biotechnol ; 6(4): 429-436, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34901481

ABSTRACT

Tuberculosis drug resistance continues to threaten global health but the underline molecular mechanisms are not clear. Ethambutol (EMB), one of the well-known first - line drugs in tuberculosis treatment is, unfortunately, not free from drug resistance problems. Genomic studies have shown that some genetic mutations in Mycobacterium tuberculosis (Mtb) EmbR, and EmbC/A/B genes cause EMB resistance. EmbR-PknH pair controls embC/A/B operon, which encodes EmbC/A/B genes, and EMB interacts with EmbA/B proteins. However, the EmbR binding site on PknH was unknown. We conducted molecular simulation on the EmbR- peptides binding structures and discovered phosphorylated PknH 273-280 (N'-HEALSPDPD-C') makes ß strand with the EmbR FHA domain, as ß-MoRF (MoRF; molecular recognition feature) does at its binding site. Hydrogen bond number analysis also supported the peptides' ß-MoRF forming activity at the EmbR FHA domain. Also, we discovered that previously known phosphorylation residues might have their chronological order according to the phosphorylation status. The discovery validated that Mtb PknH 273-280 (N'-HEALSDPD-C') has reliable EmbR binding affinity. This approach is revolutionary in the computer-aided drug discovery field, because it is the first trial to discover the protein-protein interaction site, and find binding partner in nature from this site.

4.
J Am Med Inform Assoc ; 28(10): 2298-2300, 2021 09 18.
Article in English | MEDLINE | ID: mdl-34279631

ABSTRACT

The 21st Century Cures Act, passed in 2016, and the Final Rules it called for create a roadmap for enabling patient access to their electronic health information. The set of data to be made available, as determined by the Office of the National Coordinator for Health IT through the US Core Data for Interoperability expansion process, will impact the value creation of this improved data liquidity. In this commentary, we look at the potential for significant value creation from USCDI in the context of clinical bioinformatics research and advocate for the research community's involvement in the USCDI process to propel this value creation forward. We also describe 1 mechanism-using existing required APIs for full data export capabilities-that could pragmatically enable this value creation at minimal additional technical lift beyond the current regulatory requirements.


Subject(s)
Computational Biology , Information Dissemination , Electronic Health Records , Humans
5.
Cell Genom ; 1(2)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35311178

ABSTRACT

Maximizing the personal, public, research, and clinical value of genomic information will require the reliable exchange of genetic variation data. We report here the Variation Representation Specification (VRS, pronounced "verse"), an extensible framework for the computable representation of variation that complements contemporary human-readable and flat file standards for genomic variation representation. VRS provides semantically precise representations of variation and leverages this design to enable federated identification of biomolecular variation with globally consistent and unique computed identifiers. The VRS framework includes a terminology and information model, machine-readable schema, data sharing conventions, and a reference implementation, each of which is intended to be broadly useful and freely available for community use. VRS was developed by a partnership among national information resource providers, public initiatives, and diagnostic testing laboratories under the auspices of the Global Alliance for Genomics and Health (GA4GH).

6.
NPJ Genom Med ; 5: 13, 2020.
Article in English | MEDLINE | ID: mdl-32194985

ABSTRACT

The development of Fast Healthcare Interoperability Resources (FHIR) Genomics, a feasible and efficient method for exchanging complex clinical genomic data and interpretations, is described. FHIR Genomics is a subset of the emerging Health Level 7 FHIR standard and targets data from increasingly available technologies such as next-generation sequencing. Much care and integration of feedback have been taken to ease implementation, facilitate wide-scale interoperability, and enable modern app development toward a complete precision medicine standard. A new use case, the integration of the Variant Interpretation for Cancer Consortium (VICC) "meta-knowledgebase" into a third-party application, is described.

7.
Am Soc Clin Oncol Educ Book ; 37: 450-459, 2017.
Article in English | MEDLINE | ID: mdl-28561658

ABSTRACT

In the information age, we expect data systems to make us more effective and efficient-not to make our lives more difficult! In this article, we discuss how we are using data systems, such as electronic health records (EHRs), to improve care delivery. We illustrate how US Oncology is beginning to use real-world evidence to facilitate trial accrual by automatic identification of eligible patients and how big data and predictive analytics will transform the field of oncology. Some information systems are already being used at the point of care and are already empowering clinicians to improve the care of their patients in real time. Telehealth platforms are being used to bridge gaps that currently exist in expertise, geography, and technical capability. Optimizing virtual collaboration, such as through virtual tumor boards, is empowering communities that are geographically disparate to coordinate care. Informatics methods can provide solutions to the challenging problems of how to manage the vast amounts of data confronting the practicing oncologist, including information about treatment regimens, side effects, and the influence of genomics on the practice of oncology. We also discuss some of the challenges of clinical documentation in the modern era, and review emerging efforts to engage patients as digital donors of their EHR data.


Subject(s)
Medical Informatics/trends , Medical Oncology/trends , Neoplasms/genetics , Telemedicine/trends , Electronic Health Records , Humans , Neoplasms/therapy
8.
J Am Med Inform Assoc ; 23(4): 701-10, 2016 07.
Article in English | MEDLINE | ID: mdl-27018265

ABSTRACT

BACKGROUND: Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical interpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations. METHODS: Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)® PCM, visualizes genomic information in real time, comparing a patient's diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the Health Level Seven® Fast Healthcare Interoperability Resources (FHIR)® standard; otherwise, the prototype is a normal SMART on FHIR app. RESULTS: The PCM prototype can rapidly present a visualization that compares a patient's somatic genomic alterations against a distribution built from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important feedback about the prototype's strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to include cancer specimens with multiple mutations. DISCUSSION: PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel with external knowledge bases.


Subject(s)
Mobile Applications , Neoplasms/genetics , Point-of-Care Systems , Precision Medicine , DNA, Neoplasm , Electronic Health Records , Genome , Health Information Interoperability , Health Level Seven , Humans , Mutation , User-Computer Interface
9.
J Am Med Inform Assoc ; 23(5): 899-908, 2016 09.
Article in English | MEDLINE | ID: mdl-26911829

ABSTRACT

OBJECTIVE: In early 2010, Harvard Medical School and Boston Children's Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). METHODS: We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. RESULTS: We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. CONCLUSION: In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use.


Subject(s)
Electronic Health Records/organization & administration , Health Information Interoperability/standards , Software , Electronic Health Records/standards , Health Level Seven/history , History, 21st Century
10.
J Am Med Inform Assoc ; 22(6): 1173-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26198304

ABSTRACT

BACKGROUND: Supporting clinical decision support for personalized medicine will require linking genome and phenome variants to a patient's electronic health record (EHR), at times on a vast scale. Clinico-genomic data standards will be needed to unify how genomic variant data are accessed from different sequencing systems. METHODS: A specification for the basis of a clinic-genomic standard, building upon the current Health Level Seven International Fast Healthcare Interoperability Resources (FHIR®) standard, was developed. An FHIR application protocol interface (API) layer was attached to proprietary sequencing platforms and EHRs in order to expose gene variant data for presentation to the end-user. Three representative apps based on the SMART platform were built to test end-to-end feasibility, including integration of genomic and clinical data. RESULTS: Successful design, deployment, and use of the API was demonstrated and adopted by HL7 Clinical Genomics Workgroup. Feasibility was shown through development of three apps by various types of users with background levels and locations. CONCLUSION: This prototyping work suggests that an entirely data (and web) standards-based approach could prove both effective and efficient for advancing personalized medicine.


Subject(s)
Electronic Health Records , Genomics/standards , Software , Databases, Genetic , Health Level Seven , Humans , Information Dissemination , Internet
11.
J Am Med Inform Assoc ; 22(2): 324-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25336590

ABSTRACT

Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based on observed electronic medical record data. A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive Care II database. Network visualizations depicting primary relationships were compared to those incorporating secondary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor. Subendocardial infarction with cardiac arrest was demonstrated as a sample phenotype; there were 332 primarily adjacent diagnoses, with 5423 relationships. Primary network visualization suggested a treatment-related complication phenotype and several rare diagnoses; re-clustering by secondary relationships revealed an emergent cluster of smokers with the metabolic syndrome. Network visualization reveals phenotypic patterns that may have remained occult in pairwise correlation analysis. Visualization of complex data, potentially offered as point-of-care tools on mobile devices, may allow clinicians and researchers to quickly generate hypotheses and gain deeper understanding of patient subpopulations.


Subject(s)
Audiovisual Aids , Data Display , Pattern Recognition, Automated , User-Computer Interface
12.
J Am Med Inform Assoc ; 21(6): 1060-8, 2014.
Article in English | MEDLINE | ID: mdl-24970839

ABSTRACT

BACKGROUND AND OBJECTIVE: Upgrades to electronic health record (EHR) systems scheduled to be introduced in the USA in 2014 will advance document interoperability between care providers. Specifically, the second stage of the federal incentive program for EHR adoption, known as Meaningful Use, requires use of the Consolidated Clinical Document Architecture (C-CDA) for document exchange. In an effort to examine and improve C-CDA based exchange, the SMART (Substitutable Medical Applications and Reusable Technology) C-CDA Collaborative brought together a group of certified EHR and other health information technology vendors. MATERIALS AND METHODS: We examined the machine-readable content of collected samples for semantic correctness and consistency. This included parsing with the open-source BlueButton.js tool, testing with a validator used in EHR certification, scoring with an automated open-source tool, and manual inspection. We also conducted group and individual review sessions with participating vendors to understand their interpretation of C-CDA specifications and requirements. RESULTS: We contacted 107 health information technology organizations and collected 91 C-CDA sample documents from 21 distinct technologies. Manual and automated document inspection led to 615 observations of errors and data expression variation across represented technologies. Based upon our analysis and vendor discussions, we identified 11 specific areas that represent relevant barriers to the interoperability of C-CDA documents. CONCLUSIONS: We identified errors and permissible heterogeneity in C-CDA documents that will limit semantic interoperability. Our findings also point to several practical opportunities to improve C-CDA document quality and exchange in the coming years.


Subject(s)
Electronic Health Records/standards , Meaningful Use , Medical Record Linkage , Certification , Diffusion of Innovation , Meaningful Use/legislation & jurisprudence , Medical Records Systems, Computerized , Systems Integration , United States
13.
J Am Med Inform Assoc ; 19(4): 597-603, 2012.
Article in English | MEDLINE | ID: mdl-22427539

ABSTRACT

OBJECTIVE: The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. MATERIALS AND METHODS: The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. RESULTS: The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. CONCLUSION: Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.


Subject(s)
Electronic Health Records , Information Storage and Retrieval , Software , User-Computer Interface , Computer Security , Humans , Internet , Systems Integration
14.
Stud Health Technol Inform ; 157: 7-14, 2010.
Article in English | MEDLINE | ID: mdl-20543360

ABSTRACT

While healthcare information technology (HIT) offers extraordinary promise of clinical improvement and greater efficiencies, the realization of the promise must confront and overcome a number of challenges caused by incomplete and inappropriate software design. In this paper, we review several types of HIT design and workflow decisions that limit the value and utility of HIT in electronic health (medical) record (EHR/EMR), computerized physician order entry (CPOE), and electronic medication administration record (eMAR) systems. While remedies for problems of design or workflow may be either easy or difficult, , the industry creates additional barriers in the contractual relationships it creates between itself (HIT vendors) and the clinical facilities (hospitals, clinics, and physician offices) that purchase its systems. We suggest that the structure of those relationships may retard the progress and responsiveness of HIT.


Subject(s)
Contracts , Hospital Information Systems/organization & administration , Software Design , Medical Records Systems, Computerized , United States
16.
Phys Sportsmed ; 10(9): 18, 1982 Sep.
Article in English | MEDLINE | ID: mdl-29283861
SELECTION OF CITATIONS
SEARCH DETAIL
...