Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3261, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277351

ABSTRACT

Primary sclerosing cholangitis (PSC) is characterized by progressive biliary inflammation and fibrosis. Although gut commensals are associated with PSC, their causative roles and therapeutic strategies remain elusive. Here we detect abundant Klebsiella pneumoniae (Kp) and Enterococcus gallinarum in fecal samples from 45 PSC patients, regardless of intestinal complications. Carriers of both pathogens exhibit high disease activity and poor clinical outcomes. Colonization of PSC-derived Kp in specific pathogen-free (SPF) hepatobiliary injury-prone mice enhances hepatic Th17 cell responses and exacerbates liver injury through bacterial translocation to mesenteric lymph nodes. We developed a lytic phage cocktail that targets PSC-derived Kp with a sustained suppressive effect in vitro. Oral administration of the phage cocktail lowers Kp levels in Kp-colonized germ-free mice and SPF mice, without off-target dysbiosis. Furthermore, we demonstrate that oral and intravenous phage administration successfully suppresses Kp levels and attenuates liver inflammation and disease severity in hepatobiliary injury-prone SPF mice. These results collectively suggest that using a lytic phage cocktail shows promise for targeting Kp in PSC.


Subject(s)
Cholangitis, Sclerosing , Phage Therapy , Animals , Mice , Cholangitis, Sclerosing/therapy , Klebsiella pneumoniae , Liver/pathology , Inflammation/pathology
2.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931020

ABSTRACT

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Subject(s)
Bacteriophages , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Colitis/therapy , Humans , Inflammation/therapy , Inflammatory Bowel Diseases/therapy , Klebsiella pneumoniae , Mice
3.
Bioinformatics ; 38(12): 3288-3290, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35551337

ABSTRACT

SUMMARY: Next-Generation Sequencing is widely used as a tool for identifying and quantifying microorganisms pooled together in either natural or designed samples. However, a prominent obstacle is achieving correct quantification when the pooled microbes are genetically related. In such cases, the outcome mostly depends on the method used for assigning reads to the individual targets. To address this challenge, we have developed Exodus-a reference-based Python algorithm for quantification of genomes, including those that are highly similar, when they are sequenced together in a single mix. To test Exodus' performance, we generated both empirical and in silico next-generation sequencing data of mixed genomes. When applying Exodus to these data, we observed median error rates varying between 0% and 0.21% as a function of the complexity of the mix. Importantly, no false negatives were recorded, demonstrating that Exodus' likelihood of missing an existing genome is very low, even if the genome's relative abundance is low and similar genomes are present in the same mix. Taken together, these data position Exodus as a reliable tool for identifying and quantifying genomes in mixed samples. Exodus is open source and free to use at: https://github.com/ilyavs/exodus. AVAILABILITY AND IMPLEMENTATION: Exodus is implemented in Python within a Snakemake framework. It is available on GitHub alongside a docker containing the required dependencies: https://github.com/ilyavs/exodus. The data underlying this article will be shared on reasonable request to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Genome , Algorithms , Research Design
4.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918942

ABSTRACT

Bacteriophages ("phages") infect and multiply within specific bacterial strains, causing lysis of their target. Due to the specific nature of these interactions, phages allow a high-precision approach for therapy which can also be exploited for the detection of phage-sensitive pathogens associated with chronic diseases due to gut microbiome imbalance. As rapid phage-mediated detection assays becoming standard-of-care diagnostic tools, they will advance the more widespread application of phage therapy in a precision approach. Using a conventional method and a new cloning approach to develop luminescent phages, we engineered two phages that specifically detect a disease-associated microbial strain. We performed phage sensitivity assays in liquid culture and in fecal matrices and tested the stability of spiked fecal samples stored under different conditions. Different reporter gene structures and genome insertion sites were required to successfully develop the two nluc-reporter phages. The reporter phages detected spiked bacteria in five fecal samples with high specificity. Fecal samples stored under different conditions for up to 30 days did not display major losses in reporter-phage-based detection. Luminescent phage-based diagnostics can provide a rapid co-diagnostic tool to guide the growing field of phage therapy, particularly for a precision-based approach to chronic diseases treatment.

5.
J Cell Mol Med ; 24(12): 6586-6595, 2020 06.
Article in English | MEDLINE | ID: mdl-32400052

ABSTRACT

The serum or plasma microRNA (miRNA) molecules have been suggested as diagnostic and prognostic biomarkers, in various pathological conditions. However, these molecules are also found in different serum fractions, such as exosomes and Argonaute (Ago) protein complexes. Ago1 is the predominant Ago protein expressed in heart tissue. The objective of the study was to examine the hypothesis that Ago1-associated miRNAs may be more relevant to cardiac disease and heart failure compared with the serum. In total, 84 miRNA molecules were screened for their expression in the whole serum, exosomes and Ago1, and Ago2 complexes. Ago1-bound miR-222-3p, miR-497-5p and miR-21-5p were significantly higher, and let-7a-5p was significantly lower in HF patients compared with healthy controls, whereas no such difference was observed for those markers in the serum samples among the groups. A combination of these 4 miRNAs into an Ago1-HF score provided a ROC curve with an AUC of 1, demonstrating clear discrimination between heart failure patients and healthy individuals. Ago1 fraction might be a better and more specific platform for identifying HF-related miRNAs compared with the whole serum.


Subject(s)
Argonaute Proteins/genetics , Eukaryotic Initiation Factors/genetics , Gene Expression Profiling , Heart Failure/blood , Heart Failure/genetics , MicroRNAs/blood , Argonaute Proteins/metabolism , Cluster Analysis , Eukaryotic Initiation Factors/metabolism , Gene Expression Regulation , Humans
6.
Diabetologia ; 62(9): 1653-1666, 2019 09.
Article in English | MEDLINE | ID: mdl-31187215

ABSTRACT

AIMS/HYPOTHESIS: Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS: To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS: We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION: The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY: Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.


Subject(s)
Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , MicroRNAs/metabolism , Animals , Cells, Cultured , Female , Flow Cytometry , Insulin Secretion/genetics , Male , Mass Spectrometry , Mice , MicroRNAs/genetics , Mitosis/genetics , Mitosis/physiology , Pancreas/metabolism
7.
J Clin Pathol ; 70(6): 500-507, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27798083

ABSTRACT

AIMS: The distinction between benign and malignant thyroid nodules has important therapeutic implications. Our objective was to develop an assay that could classify indeterminate thyroid nodules as benign or suspicious, using routinely prepared fine needle aspirate (FNA) cytology smears. METHODS: A training set of 375 FNA smears was used to develop the microRNA-based assay, which was validated using a blinded, multicentre, retrospective cohort of 201 smears. Final diagnosis of the validation samples was determined based on corresponding surgical specimens, reviewed by the contributing institute pathologist and two independent pathologists. Validation samples were from adult patients (≥18 years) with nodule size >0.5 cm, and a final diagnosis confirmed by at least one of the two blinded, independent pathologists. The developed assay, RosettaGX Reveal, differentiates benign from malignant thyroid nodules, using quantitative RT-PCR. RESULTS: Test performance on the 189 samples that passed quality control: negative predictive value: 91% (95% CI 84% to 96%); sensitivity: 85% (CI 74% to 93%); specificity: 72% (CI 63% to 79%). Performance for cases in which all three reviewing pathologists were in agreement regarding the final diagnosis (n=150): negative predictive value: 99% (CI 94% to 100%); sensitivity: 98% (CI 87% to 100%); specificity: 78% (CI 69% to 85%). CONCLUSIONS: A novel assay utilising microRNA expression in cytology smears was developed. The assay distinguishes benign from malignant thyroid nodules using a single FNA stained smear, and does not require fresh tissue or special collection and shipment conditions. This assay offers a valuable tool for the preoperative classification of thyroid samples with indeterminate cytology.


Subject(s)
MicroRNAs/metabolism , Thyroid Neoplasms/diagnosis , Thyroid Nodule/diagnosis , Biopsy, Fine-Needle , Female , Humans , Male , Middle Aged , Observer Variation , Predictive Value of Tests
8.
Nanomedicine ; 12(7): 2201-2214, 2016 10.
Article in English | MEDLINE | ID: mdl-27262933

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive primary neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness, and drug resistance. microRNA-based therapeutics represent a promising approach due to their ability to inhibit multiple targets. In this work, we aim to restore the oncosuppressor activity of microRNA-34a (miR-34a) in GBM. We developed a cationic carrier system, dendritic polyglycerolamine (dPG-NH2), which remarkably improves miRNA stability, intracellular trafficking, and activity. dPG-NH2 carrying mature miR-34a targets C-MET, CDK6, Notch1 and BCL-2, consequently inhibiting cell cycle progression, proliferation and migration of GBM cells. Following complexation with dPG-NH2, miRNA is stable in plasma and able to cross the blood-brain barrier. We further show inhibition of tumor growth following treatment with dPG-NH2-miR-34a in a human glioblastoma mouse model. We hereby present a promising technology using dPG-NH2-miR-34a polyplex for brain-tumor treatment, with enhanced efficacy and no apparent signs of toxicity.


Subject(s)
Brain Neoplasms/drug therapy , MicroRNAs/pharmacology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Drug Carriers , Glioblastoma , Glycerol , Humans , Polymers
9.
PLoS One ; 10(4): e0122108, 2015.
Article in English | MEDLINE | ID: mdl-25875172

ABSTRACT

In-vitro expansion of ß cells from adult human pancreatic islets could provide abundant cells for cell replacement therapy of diabetes. However, proliferation of ß-cell-derived (BCD) cells is associated with dedifferentiation. Here we analyzed changes in microRNAs (miRNAs) during BCD cell dedifferentiation and identified miR-375 as one of the miRNAs greatly downregulated. We hypothesized that restoration of miR-375 expression in expanded BCD cells may contribute to their redifferentiation. Our findings demonstrate that overexpression of miR-375 alone leads to activation of ß-cell gene expression, reduced cell proliferation, and a switch from N-cadherin to E-cadherin expression, which characterizes mesenchymal-epithelial transition. These effects, which are reproducible in cells derived from multiple human donors, are likely mediated by repression of PDPK1 transcripts and indirect downregulation of GSK3 activity. These findings support an important role of miR-375 in regulation of human ß-cell phenotype, and suggest that miR-375 upregulation may facilitate the generation of functional insulin-producing cells following ex-vivo expansion of human islet cells.


Subject(s)
Cell Differentiation/genetics , Cell- and Tissue-Based Therapy , Diabetes Mellitus/genetics , Insulin-Secreting Cells/metabolism , MicroRNAs/genetics , 3-Phosphoinositide-Dependent Protein Kinases/biosynthesis , Adult , Cadherins/biosynthesis , Cell Proliferation/genetics , Diabetes Mellitus/therapy , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Developmental , Humans , In Vitro Techniques , Insulin/metabolism , Insulin-Secreting Cells/transplantation , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , MicroRNAs/metabolism
10.
Exp Diabetes Res ; 2012: 470302, 2012.
Article in English | MEDLINE | ID: mdl-22991506

ABSTRACT

microRNAs (miRNAs) play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.


Subject(s)
DEAD-box RNA Helicases/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , MicroRNAs/metabolism , Ribonuclease III/metabolism , Animals , Apoptosis , Blood Glucose/analysis , Cadherins/genetics , Cadherins/metabolism , Crosses, Genetic , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Developmental , Glucose Intolerance/blood , Heterozygote , Insulin/blood , Insulin/metabolism , Insulin Secretion , Integrases/genetics , Integrases/metabolism , Islets of Langerhans/growth & development , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Organogenesis , Ribonuclease III/genetics
11.
Development ; 139(16): 3021-31, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22764048

ABSTRACT

Genome-encoded microRNAs (miRNAs) provide a post-transcriptional regulatory layer that is important for pancreas development. However, how specific miRNAs are intertwined into the transcriptional network, which controls endocrine differentiation, is not well understood. Here, we show that microRNA-7 (miR-7) is specifically expressed in endocrine precursors and in mature endocrine cells. We further demonstrate that Pax6 is an important target of miR-7. miR-7 overexpression in developing pancreas explants or in transgenic mice led to Pax6 downregulation and inhibition of α- and ß-cell differentiation, resembling the molecular changes caused by haploinsufficient expression of Pax6. Accordingly, miR-7 knockdown resulted in Pax6 upregulation and promoted α- and ß-cell differentiation. Furthermore, Pax6 downregulation reversed the effect of miR-7 knockdown on insulin promoter activity. These data suggest a novel miR-7-based circuit that ensures precise control of endocrine cell differentiation.


Subject(s)
Islets of Langerhans/embryology , Islets of Langerhans/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreas/embryology , Pancreas/metabolism , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/physiology , Eye Proteins/antagonists & inhibitors , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Haploinsufficiency , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Insulin/genetics , Islets of Langerhans/cytology , Mice , Mice, Inbred ICR , Mice, Transgenic , MicroRNAs/antagonists & inhibitors , Models, Biological , Organ Culture Techniques , PAX6 Transcription Factor , Paired Box Transcription Factors/antagonists & inhibitors , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Pancreas/cytology , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism , Up-Regulation
12.
Exp Diabetes Res ; 2012: 695214, 2012.
Article in English | MEDLINE | ID: mdl-22675342

ABSTRACT

Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer, which is important for pancreas development. Differentiation of endocrine cells is controlled by a network of pancreatic transcription factors including Ngn3 and NeuroD/Beta2. However, how specific miRNAs are intertwined into this transcriptional network is not well understood. Here, we characterize the regulation of microRNA-7 (miR-7) by endocrine-specific transcription factors. Our data reveal that three independent miR-7 genes are coexpressed in the pancreas. We have identified conserved blocks upstream of pre-miR-7a-2 and pre-miR-7b and demonstrated by functional assays that they possess promoter activity, which is increased by the expression of NeuroD/Beta2. These data suggest that the endocrine specificity of miR-7 expression is governed by transcriptional mechanisms and involves members of the pancreatic endocrine network of transcription factors.


Subject(s)
Gene Expression Regulation , MicroRNAs/biosynthesis , MicroRNAs/genetics , Pancreas/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , DNA, Complementary/metabolism , HEK293 Cells , Humans , Models, Genetic , Nerve Tissue Proteins/metabolism , Promoter Regions, Genetic , RNA Processing, Post-Transcriptional
13.
Methods Mol Biol ; 732: 89-97, 2011.
Article in English | MEDLINE | ID: mdl-21431707

ABSTRACT

Here, we detail a protocol to design and introduce sequence-specific cholesterol-conjugated antisense oligonucleotides into mouse organ culture. We review design principles for "antagomirs", antisense oligos with a cholesterol-moiety modification at the 3', and present an optimized method to apply them onto 3D cultured embryonic pancreas. The method offers an approach to study the developmental functions of individual miRNAs and to evaluate miRNA targets, which is significantly faster and simpler than comparable genetics-based approaches.


Subject(s)
MicroRNAs/genetics , Oligonucleotides, Antisense/genetics , Organ Culture Techniques , Pancreas , Animals , Cholesterol , Gene Knockdown Techniques , Mice
14.
Nat Immunol ; 12(3): 239-46, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21278735

ABSTRACT

Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Δgut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMß, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Δgut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELMß expression in vivo; miR-375-deficient mice had significantly less intestinal RELMß, which possibly explains the greater susceptibility of Dicer1(Δgut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.


Subject(s)
Immunity, Mucosal/immunology , MicroRNAs/immunology , T-Lymphocytes/immunology , Animals , Cell Communication , Epithelium/immunology , Gastrointestinal Tract/immunology , HT29 Cells , Humans , Immunohistochemistry , Interleukin-13/metabolism , Mice , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
15.
EMBO J ; 30(5): 835-45, 2011 Mar 02.
Article in English | MEDLINE | ID: mdl-21285947

ABSTRACT

MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated ß-cells remain unclear. Here, we show that miRNA inactivation in ß-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient ß-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured ß-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.


Subject(s)
DEAD-box RNA Helicases/physiology , Endoribonucleases/physiology , Insulin-Secreting Cells/metabolism , Insulin/genetics , Insulin/metabolism , MicroRNAs/physiology , Repressor Proteins/metabolism , Transcription, Genetic , Animals , Blotting, Western , Cell Differentiation , Cells, Cultured , Down-Regulation , Glucose Intolerance , Humans , Immunoenzyme Techniques , Insulin-Secreting Cells/cytology , Integrases/metabolism , Luciferases/metabolism , Mice , Mice, Knockout , MicroRNAs/antagonists & inhibitors , RNA, Messenger/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Ribonuclease III
16.
PLoS One ; 4(4): e5033, 2009.
Article in English | MEDLINE | ID: mdl-19343226

ABSTRACT

microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5'-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5'-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes.


Subject(s)
Gene Expression Regulation/genetics , Islets of Langerhans/metabolism , MicroRNAs/genetics , Promoter Regions, Genetic , Animals , Base Sequence , Cell Line , Cricetinae , DNA Primers , DNA, Complementary , Fluorescent Antibody Technique , Genes, Reporter , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Sequence Homology, Nucleic Acid , TATA Box
SELECTION OF CITATIONS
SEARCH DETAIL
...