Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2368, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531860

ABSTRACT

The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.


Subject(s)
Beer , Taste Perception , Beer/analysis , Machine Learning , Consumer Behavior , Taste
2.
Nucleic Acids Res ; 50(D1): D1468-D1474, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34747486

ABSTRACT

PLAZA is a platform for comparative, evolutionary, and functional plant genomics. It makes a broad set of genomes, data types and analysis tools available to researchers through a user-friendly website, an API, and bulk downloads. In this latest release of the PLAZA platform, we are integrating a record number of 134 high-quality plant genomes, split up over two instances: PLAZA Dicots 5.0 and PLAZA Monocots 5.0. This number of genomes corresponds with a massive expansion in the number of available species when compared to PLAZA 4.0, which offered access to 71 species, a 89% overall increase. The PLAZA 5.0 release contains information for 5 882 730 genes, and offers pre-computed gene families and phylogenetic trees for 5 274 684 protein-coding genes. This latest release also comes with a set of new and updated features: a new BED import functionality for the workbench, improved interactive visualizations for functional enrichments and genome-wide mapping of gene sets, and a fully redesigned and extended API. Taken together, this new version offers extended support for plant biologists working on different families within the green plant lineage and provides an efficient and versatile toolbox for plant genomics. All PLAZA releases are accessible from the portal website: https://bioinformatics.psb.ugent.be/plaza/.


Subject(s)
Biological Evolution , Databases, Genetic , Plants/classification , Software , Genome, Plant/genetics , Genomics/standards , Molecular Sequence Annotation , Multigene Family/genetics , Phylogeny , Plants/genetics
3.
Nucleic Acids Res ; 49(17): e101, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34197621

ABSTRACT

Advances in high-throughput sequencing have resulted in a massive increase of RNA-Seq transcriptome data. However, the promise of rapid gene expression profiling in a specific tissue, condition, unicellular organism or microbial community comes with new computational challenges. Owing to the limited availability of well-resolved reference genomes, de novo assembled (meta)transcriptomes have emerged as popular tools for investigating the gene repertoire of previously uncharacterized organisms. Yet, despite their potential, these datasets often contain fragmented or contaminant sequences, and their analysis remains difficult. To alleviate some of these challenges, we developed TRAPID 2.0, a web application for the fast and efficient processing of assembled transcriptome data. The initial processing phase performs a global characterization of the input data, providing each transcript with several layers of annotation, comprising structural, functional, and taxonomic information. The exploratory phase enables downstream analyses from the web application. Available analyses include the assessment of gene space completeness, the functional analysis and comparison of transcript subsets, and the study of transcripts in an evolutionary context. A comparison with similar tools highlights TRAPID's unique features. Finally, analyses performed within TRAPID 2.0 are complemented by interactive data visualizations, facilitating the extraction of new biological insights, as demonstrated with diatom community metatranscriptomes.


Subject(s)
Classification/methods , Computational Biology/methods , Gene Expression Profiling/methods , RNA-Seq/methods , Web Browser , Amino Acid Sequence , Animals , Evolution, Molecular , Gene Ontology , Humans , Molecular Sequence Annotation/methods , Phylogeny , Reproducibility of Results , Sequence Homology, Amino Acid , Species Specificity
4.
Nat Commun ; 12(1): 2890, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001872

ABSTRACT

Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry.

5.
Bioinformatics ; 36(3): 948-949, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31392322

ABSTRACT

MOTIVATION: In vivo protein folding is governed by molecular chaperones, that escort proteins from their translational birth to their proteolytic degradation. In E.coli the main classes of chaperones that interact with the nascent chain are trigger factor, DnaK/J and GroEL/ES and several authors have performed whole-genome experiments to construct exhaustive client lists for each of these. RESULTS: We constructed a database collecting all publicly available data of experimental chaperone-interaction and -dependency data for the E.coli proteome, and enriched it with an extensive set of protein-specific as well as cell context-dependent proteostatic parameters. We made this publicly accessible via a web interface that allows to search for proteins or chaperone client lists, but also to profile user-specified datasets against all the collected parameters. We hope this will accelerate research in this field by quickly identifying differentiating features in datasets. AVAILABILITY AND IMPLEMENTATION: The Protein Homeostasis Database is freely available without any registration requirement at http://PHDB.switchlab.org/.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP70 Heat-Shock Proteins , Molecular Chaperones , Protein Folding , Proteostasis
6.
J Proteome Res ; 18(2): 765-769, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30540477

ABSTRACT

Scop3D is a tool that automatically annotates protein structure with sequence conservation starting from a set of protein sequence variants. We present a complete upgrade and rewrite of Scop3D. We have included a DNA module that allows the analysis of single nucleotide polymorphisms in relation to the structural context of the protein. Scop3D therefore forms a bridge between genomics and protein structure. Moreover, Scop3D is now also available through an intuitive web-interface that makes the tool highly user-friendly.


Subject(s)
Databases, Protein , Internet , Mutation Rate , Proteins/genetics , Software , Polymorphism, Single Nucleotide , Proteins/chemistry , User-Computer Interface
7.
Cell ; 174(4): 982-998.e20, 2018 08 09.
Article in English | MEDLINE | ID: mdl-29909982

ABSTRACT

The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain.


Subject(s)
Aging , Brain/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Regulatory Networks , Single-Cell Analysis/methods , Transcriptome , Animals , Drosophila melanogaster/physiology , Female , Gene Expression Profiling , Male
8.
Nucleic Acids Res ; 46(D1): D1190-D1196, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29069403

ABSTRACT

PLAZA (https://bioinformatics.psb.ugent.be/plaza) is a plant-oriented online resource for comparative, evolutionary and functional genomics. The PLAZA platform consists of multiple independent instances focusing on different plant clades, while also providing access to a consistent set of reference species. Each PLAZA instance contains structural and functional gene annotations, gene family data and phylogenetic trees and detailed gene colinearity information. A user-friendly web interface makes the necessary tools and visualizations accessible, specific for each data type. Here we present PLAZA 4.0, the latest iteration of the PLAZA framework. This version consists of two new instances (Dicots 4.0 and Monocots 4.0) providing a large increase in newly available species, and offers access to updated and newly implemented tools and visualizations, helping users with the ever-increasing demands for complex and in-depth analyzes. The total number of species across both instances nearly doubles from 37 species in PLAZA 3.0 to 71 species in PLAZA 4.0, with a much broader coverage of crop species (e.g. wheat, palm oil) and species of evolutionary interest (e.g. spruce, Marchantia). The new PLAZA instances can also be accessed by a programming interface through a RESTful web service, thus allowing bioinformaticians to optimally leverage the power of the PLAZA platform.


Subject(s)
Biological Evolution , Genome, Plant , Genomics , Plants/genetics , Crops, Agricultural/genetics , Databases, Genetic , Phylogeny , User-Computer Interface
9.
Nucleic Acids Res ; 46(D1): D586-D594, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29045755

ABSTRACT

Triterpenes constitute a large and important class of plant natural products with diverse structures and functions. Their biological roles range from membrane structural components over plant hormones to specialized plant defence compounds. Furthermore, triterpenes have great potential for a variety of commercial applications such as vaccine adjuvants, anti-cancer drugs, food supplements and agronomic agents. Their biosynthesis is carried out through complicated, branched pathways by multiple enzyme types that include oxidosqualene cyclases, cytochrome P450s, and UDP-glycosyltransferases. Given that the number of characterized triterpene biosynthesis enzymes has been growing fast recently, the need for a database specifically focusing on triterpene enzymology became eminent. Here, we present the TriForC database (http://bioinformatics.psb.ugent.be/triforc/), encompassing a comprehensive catalogue of triterpene biosynthesis enzymes. This highly interlinked database serves as a user-friendly access point to versatile data sets of enzyme and compound features, enabling the scanning of a complete catalogue of experimentally validated triterpene enzymes, their substrates and products, as well as the pathways they constitute in various plant species. The database can be accessed by direct browsing or through convenient search tools including keyword, BLAST, plant species and substructure options. This database will facilitate gene mining and creating genetic toolboxes for triterpene synthetic biology.


Subject(s)
Databases, Factual , Plants/metabolism , Triterpenes/metabolism , Biological Products/metabolism , Biosynthetic Pathways , Databases, Chemical , Databases, Protein , Enzymes/metabolism , Phylogeny , Plant Proteins/metabolism , Plants/enzymology , Search Engine , Substrate Specificity , Systems Biology , Triterpenes/chemistry
10.
Bioinformatics ; 33(18): 2946-2947, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28525531

ABSTRACT

MOTIVATION: Comparative and evolutionary studies utilize phylogenetic trees to analyze and visualize biological data. Recently, several web-based tools for the display, manipulation and annotation of phylogenetic trees, such as iTOL and Evolview, have released updates to be compatible with the latest web technologies. While those web tools operate an open server access model with a multitude of registered users, a feature-rich open source solution using current web technologies is not available. RESULTS: Here, we present an extension of the widely used PhyloXML standard with several new options to accommodate functional genomics or annotation datasets for advanced visualization. Furthermore, PhyD3 has been developed as a lightweight tool using the JavaScript library D3.js to achieve a state-of-the-art phylogenetic tree visualization in the web browser, with support for advanced annotations. The current implementation is open source, easily adaptable and easy to implement in third parties' web sites. AVAILABILITY AND IMPLEMENTATION: More information about PhyD3 itself, installation procedures and implementation links are available at http://phyd3.bits.vib.be and at http://github.com/vibbits/phyd3/ . CONTACT: klaas.vandepoele@ugent.vib.be or michiel.vanbel@ugent.vib.be. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics/methods , Phylogeny , Software , Internet , Sequence Analysis, DNA/methods
11.
Nucleic Acids Res ; 45(W1): W490-W494, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28472390

ABSTRACT

Transcription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v3 web server allows easy visualization and exploration of predicted transcription factor binding sites (TFBSs) in any genomic region surrounding coding or non-coding genes. In this updated version, with a completely re-implemented user interface using latest web technologies, users can choose from nine reference organisms ranging from human to yeast. ConTra v3 can analyze promoter regions, 5΄-UTRs, 3΄-UTRs and introns or any other genomic region of interest. Thousands of position weight matrices are available to choose from for detecting specific binding sites. Besides this visualization option, additional new exploration functionality is added to the tool that will automatically detect TFBSs having at the same time the highest regulatory potential, the highest conservation scores of the genomic regions covered by the predicted TFBSs and strongest co-localizations with genomic regions exhibiting regulatory activity. The ConTra v3 web server is freely available at http://bioit2.irc.ugent.be/contra/v3.


Subject(s)
Software , Transcription Factors/metabolism , Binding Sites , Genomics , Humans , Interleukin-2/genetics , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...