Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(11): e0276757, 2022.
Article in English | MEDLINE | ID: mdl-36395329

ABSTRACT

Marine renewables could form a significant part of the green energy mix. However, a potential environmental impact of tidal energy converters (TECs) is collision risk between a device and animal, which has been a significant barrier in the consenting process. While it is important to understand the number of collisions of an animal with the device, the relative speed at which an animal collides with the device, and the point on the animal where collision occurs, will determine whether a collision is fatal, which is important in understanding population-level impacts. Using a simulation-based collision risk model, this paper demonstrates a novel method for producing estimates of mortality. Extracting both the speed and the location of collisions between an animal and TEC, in this instance a seal and horizontal axis turbine, collision speed and location of collision are used to produce probabilities of mortality. To provide a hypothetical example we quantified the speed and position at which a collision occurs to estimate mortality and, using collision position, we determine all predicted collisions with the head of the animal as fatal, for example, whilst deeming other collisions non-fatal. This is the first collision risk model to incorporate speed at the point of contact and the location where the collision occurs on the animal, to estimate the probability of mortality resulting from a collision. The hypothetical scenarios outline how these important variables extracted from the model can be used to predict the proportion of fatal events. This model enables a comprehensive approach that ultimately provides advancements in collision risk modelling for use in the consenting process of TECs. Furthermore, these methods can easily be adapted to other renewable energy devices and receptors, such as wind and birds.


Subject(s)
Caniformia , Wind , Animals , Computer Simulation , Renewable Energy , Birds
2.
J Environ Manage ; 278(Pt 1): 111484, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33120093

ABSTRACT

The marine renewable energy industry is expanding as countries strive to reach climate targets as set out in the Paris Agreement. For tidal energy devices, the potential risk for animals to collide with a device, particularly its moving parts such as rotor blades, is often a major barrier in the consenting process. Theoretical work surrounding collision risk has commonly made use of a formulaic modelling approach. However, whilst providing a platform to assess conventional horizontal axis tidal turbines, the frameworks applied lack the flexibility to incorporate novel device designs or more complex animal movement parameters (e.g. dive trajectories). To demonstrate the novel simulation-based approach to estimating collision probabilities a hypothetical case study was used to demonstrated how the approach can assess the influence that variations in ecological and behavioural data had on collision probabilities. To do this, a tidal kite moving in a 3D figure-of-eight trajectory and a seal-shaped object were modelled and variations to angle of approach, speed and size of the animal were made. To further improve the collision risk estimates, results of the simulations were post-processed by integrating a hypothetical dive profile. The simulations showed how variation in the input parameters and additional post-processing influence collision probabilities. Our results demonstrate the potential for using this simulation-based approach for assessing collision risk, highlighting the flexibility it offers by way of incorporating empirical data or expert elicitation to better inform the modelling process. This framework, where device type, configuration and animal-related parameters can be varied with relative simplicity, on a case-by-case basis, provides a more tailored tool for assessing a diverse range of interactions between marine renewable energy developments and receptors. In providing a robust and transparent quantitative approach to addressing collision risk this flexible approach can better inform the decision-making process and aid progress with respect to developing a renewable energy industry in a sustainable manner. Therefore, the approach outlined has clear applications that are relevant to many stakeholders and can contribute to our ability to ensure we achieve sustainable growth in the marine renewable energy industry as part of a global strategy to combat climate change.


Subject(s)
Birds , Renewable Energy , Animals , Climate Change , Computer Simulation , Paris
3.
J Acoust Soc Am ; 144(5): EL441, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30522284

ABSTRACT

This paper presents the first noise measurements of a quarter-scale subsea tidal kite (anchored to the sea floor by a tether and flying in a figure-eight configuration in the water column) operating in field conditions. Challenges in the measurement and post-processing of the data are detailed. Results are presented for three operating conditions of the kite: (1) varying turbine rotations per minute (RPM), (2) varying kite speed, and (3) a twisted tether. Turbine RPM was identified as the main parameter influencing noise emissions.

4.
J Phycol ; 51(6): 1116-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26987006

ABSTRACT

The influence of oscillatory versus unidirectional flow on the growth and nitrate-uptake rates of juvenile kelp, Laminaria digitata, was determined seasonally in experimental treatments that simulated as closely as possible natural environmental conditions. In winter, regardless of flow condition (oscillatory and unidirectional) or water velocity, no influence of water motion was observed on the growth rate of L. digitata. In summer, when ambient nitrate concentrations were low, increased water motion enhanced macroalgal growth, which is assumed to be related to an increase in the rate of supply of nutrients to the blade surface. Nitrate-uptake rates were significantly influenced by water motion and season. Lowest nitrate-uptake rates were observed for velocities <5 cm · s(-1) and nitrate-uptake rates increased by 20%-50% under oscillatory motion compared to unidirectional flow at the same average speed. These data further suggested that the diffusion boundary layer played a significant role in influencing nitrate-uptake rates. However, while increased nitrate-uptake in oscillatory flow was clear, this was not reflected in growth rates and further work is required to understand the disconnection of nitrate-uptake and growth by L. digitata in oscillatory flow. The data obtained support those from related field-based studies, which suggest that in summer, when insufficient nitrogen is available in the water to saturate metabolic demand, the growth rate of kelps will be influenced by water motion restricting mass transfer of nitrogen.

5.
Biol Bull ; 227(1): 33-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25216500

ABSTRACT

Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes.


Subject(s)
Fertilization , Hydrodynamics , Ovum/physiology , Spermatozoa/physiology , Strongylocentrotus/physiology , Animals , Environment , Male
6.
PLoS One ; 8(9): e76082, 2013.
Article in English | MEDLINE | ID: mdl-24098766

ABSTRACT

Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5-12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(u(w))) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50-85% at low flows (rms(u(w)) <0.02 m s(-1)), depending on the location sampled, but declined to below 10% for most locations at higher rms(u(w)). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(u(w)) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions.


Subject(s)
Fertilization/physiology , Strongylocentrotus/physiology , Water Movements , Animals , Models, Biological , Oscillometry
7.
J Phycol ; 44(2): 320-30, 2008 Apr.
Article in English | MEDLINE | ID: mdl-27041188

ABSTRACT

The influence of seawater velocity (1.5-12 cm ·â€Šs(-1) ) on inorganic nitrogen (N) uptake by the soft-sediment perennial macroalga Adamsiella chauvinii (Harv.) L. E. Phillips et W. A. Nelson (Rhodophyta) was determined seasonally by measuring uptake rate in a laboratory flume. Regardless of N tissue content, water velocity had no influence on NO3 (-) uptake in either winter or summer, indicating that NO3 (-) -uptake rate was biologically limited. However, when thalli were N limited, increasing water velocity increased NH4 (+) uptake, suggesting that mass-transfer limitation of NH4 (+) is likely during summer for natural populations. Uptake kinetics (Vmax , Ks ) were similar among three populations of A. chauvinii at sites with different mean flow speeds; however, uptake rates of NO3 (-) and NH4 (+) were lower in summer (when N status was generally low) than in winter. Our results highlight how N uptake can be affected by seasonal changes in the physiology of a macroalga and that further investigation of N uptake of different macroalgae (red, brown, and green) during different seasons is important in determining the relative influence of water velocity on nutrient uptake.

SELECTION OF CITATIONS
SEARCH DETAIL
...