Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ArXiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38013887

ABSTRACT

Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.

2.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693476

ABSTRACT

Background: The wide dynamic range of circulating proteins coupled with the diversity of proteoforms present in plasma has historically impeded comprehensive and quantitative characterization of the plasma proteome at scale. Automated nanoparticle (NP) protein corona-based proteomics workflows can efficiently compress the dynamic range of protein abundances into a mass spectrometry (MS)-accessible detection range. This enhances the depth and scalability of quantitative MS-based methods, which can elucidate the molecular mechanisms of biological processes, discover new protein biomarkers, and improve comprehensiveness of MS-based diagnostics. Methods: Investigating multi-species spike-in experiments and a cohort, we investigated fold-change accuracy, linearity, precision, and statistical power for the using the Proteograph™ Product Suite, a deep plasma proteomics workflow, in conjunction with multiple MS instruments. Results: We show that NP-based workflows enable accurate identification (false discovery rate of 1%) of more than 6,000 proteins from plasma (Orbitrap Astral) and, compared to a gold standard neat plasma workflow that is limited to the detection of hundreds of plasma proteins, facilitate quantification of more proteins with accurate fold-changes, high linearity, and precision. Furthermore, we demonstrate high statistical power for the discovery of biomarkers in small- and large-scale cohorts. Conclusions: The automated NP workflow enables high-throughput, deep, and quantitative plasma proteomics investigation with sufficient power to discover new biomarker signatures with a peptide level resolution.

3.
J Am Heart Assoc ; 12(18): e030791, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37681524

ABSTRACT

Background The renin-angiotensin system plays a crucial role in human physiology, and its main hormone, angiotensin, activates 2 G-protein-coupled receptors, the angiotensin type-1 and type-2 receptors, in almost every organ. However, controversy exists about the location, distribution, and expression levels of these receptors. Concerns have been raised over the low sensitivity, low specificity, and large variability between lots of commercially available antibodies for angiotensin type-1 and type-2 receptors, which makes it difficult to reconciliate results of different studies. Here, we describe the first non-antibody-based sensitive and specific targeted quantitative mass spectrometry assay for angiotensin receptors. Methods and Results Using a technique that allows targeted analysis of multiple peptides across multiple samples in a single mass spectrometry analysis, known as TOMAHAQ (triggered by offset, multiplexed, accurate mass, high resolution, and absolute quantification), we have identified and validated specific human tryptic peptides that permit identification and quantification of angiotensin type-1 and type-2 receptors in biological samples. Several peptide sequences are conserved in rodents, making these mass spectrometry assays amenable to both preclinical and clinical studies. We have used this method to quantify angiotensin type-1 and type-2 receptors in postmortem frontal cortex samples of older adults (n=28) with Alzheimer dementia. We correlated levels of angiotensin receptors to biomarkers classically linked to renin-angiotensin system activation, including oxidative stress, inflammation, amyloid-ß load, and paired helical filament-tau tangle burden. Conclusions These robust high-throughput assays will not only catalyze novel mechanistic studies in the angiotensin research field but may also help to identify patients with an unbalanced angiotensin receptor distribution who would benefit from angiotensin receptor blocker treatment.


Subject(s)
Angiotensins , Receptors, Angiotensin , Humans , Aged , Renin-Angiotensin System , Angiotensin Receptor Antagonists , Antibodies
4.
J Am Soc Mass Spectrom ; 34(9): 1858-1867, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37463334

ABSTRACT

Skeletal muscle is a major regulatory tissue of whole-body metabolism and is composed of a diverse mixture of cell (fiber) types. Aging and several diseases differentially affect the various fiber types, and therefore, investigating the changes in the proteome in a fiber-type specific manner is essential. Recent breakthroughs in isolated single muscle fiber proteomics have started to reveal heterogeneity among fibers. However, existing procedures are slow and laborious, requiring 2 h of mass spectrometry time per single muscle fiber; 50 fibers would take approximately 4 days to analyze. Thus, to capture the high variability in fibers both within and between individuals requires advancements in high throughput single muscle fiber proteomics. Here we use a single cell proteomics method to enable quantification of single muscle fiber proteomes in 15 min total instrument time. As proof of concept, we present data from 53 isolated skeletal muscle fibers obtained from two healthy individuals analyzed in 13.25 h. Adapting single cell data analysis techniques to integrate the data, we can reliably separate type 1 and 2A fibers. Ninety-four proteins were statistically different between clusters indicating alteration of proteins involved in fatty acid oxidation, oxidative phosphorylation, and muscle structure and contractile function. Our results indicate that this method is significantly faster than prior single fiber methods in both data collection and sample preparation while maintaining sufficient proteome depth. We anticipate this assay will enable future studies of single muscle fibers across hundreds of individuals, which has not been possible previously due to limitations in throughput.


Subject(s)
Proteome , Proteomics , Humans , Proteome/metabolism , Proteomics/methods , Workflow , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal
5.
Anal Chem ; 95(24): 9145-9150, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37289937

ABSTRACT

Identification and proteomic characterization of rare cell types within complex organ-derived cell mixtures is best accomplished by label-free quantitative mass spectrometry. High throughput is required to rapidly survey hundreds to thousands of individual cells to adequately represent rare populations. Here we present parallelized nanoflow dual-trap single-column liquid chromatography (nanoDTSC) operating at 15 min of total run time per cell with peptides quantified over 11.5 min using standard commercial components, thus offering an accessible and efficient LC solution to analyze 96 single cells per day. At this throughput, nanoDTSC quantified over 1000 proteins in individual cardiomyocytes and heterogeneous populations of single cells from the aorta.


Subject(s)
Proteins , Proteomics , Proteomics/methods , Chromatography, Liquid/methods , Proteins/chemistry , Peptides/chemistry , Mass Spectrometry/methods
6.
Physiol Genomics ; 55(8): 324-337, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37306406

ABSTRACT

The vascular endothelium constitutes the inner lining of the blood vessel, and malfunction and injuries of the endothelium can cause cardiovascular diseases as well as other diseases including stroke, tumor growth, and chronic kidney failure. Generation of effective sources to replace injured endothelial cells (ECs) could have significant clinical impact, and somatic cell sources like peripheral or cord blood cannot credibly supply enough endothelial cell progenitors for multitude of treatments. Pluripotent stem cells are a promising source for a reliable EC supply, which have the potential to restore tissue function and treat vascular diseases. We have developed methods to differentiate induced pluripotent stem cells (iPSCs) efficiently and robustly across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) with high purity. These iECs present with canonical endothelial cell markers and exhibit measures of endothelial cell functionality with the uptake of Dil fluorescent dye-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and tube formation. Using proteomic analysis, we revealed that the iECs are more proteomically similar to established human umbilical vein ECs (HUVECs) than to iPSCs. Posttranslational modifications (PTMs) were most shared between HUVECs and iECs, and potential targets for increasing the proteomic similarity of iECs to HUVECs were identified. Here we demonstrate an efficient robust method to differentiate iPSCs into functional ECs, and for the first time provide a comprehensive protein expression profile of iECs, which indicates their similarities with a widely used immortalized HUVECs, allowing for further mechanistic studies of EC development, signaling, and metabolism for future regenerative applications.NEW & NOTEWORTHY We have developed methods to differentiate induced pluripotent stem cells (iPSCs) across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) and demonstrated the proteomic similarity of these cells to a widely used endothelial cell line (HUVECs). We also identified posttranslational modifications and targets for increasing the proteomic similarity of iECs to HUVECs. In the future, iECs can be used to study EC development, signaling, and metabolism for future regenerative applications.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cells, Cultured , Cell Differentiation , Proteomics , Human Umbilical Vein Endothelial Cells , Endothelium, Vascular
7.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37162892

ABSTRACT

Background: Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection. Methods: This study generated a plasma proteomic dataset from 75 patients with descending type B dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage distances with hyperparameter optimization using 5-fold cross validation. Permutation importance (PI) was used for ranking the most important predictor proteins of ML classification between disease states and the proteins among the top 10 PI protein groups were submitted for pathway analysis. Results: Of the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin (HPX), were significantly different at an adjusted p-value <0.01 between Type B and DTAA cases. The highest performing model on the training set (Support Vector Classifier) and its corresponding linkage distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of 0.7 to classify between Type B from DTAA cases. The five proteins with the highest PI scores were immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10 most important correlated groups generated the following significantly enriched pathways in the plasma of Type B versus DTAA patients: complement activation, humoral immune response, and blood coagulation. Conclusions: We conclude that ML may be useful in differentiating the plasma proteome of highly similar disease states that would otherwise not be distinguishable using statistics, and, in such cases, ML may enable prioritizing important proteins for model prediction.

8.
J Proteome Res ; 22(6): 2124-2130, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37040897

ABSTRACT

Heart tissue sample preparation for mass spectrometry (MS) analysis that includes prefractionation reduces the cellular protein dynamic range and increases the relative abundance of nonsarcomeric proteins. We previously described "IN-Sequence" (IN-Seq) where heart tissue lysate is sequentially partitioned into three subcellular fractions to increase the proteome coverage more than a single direct tissue analysis by mass spectrometry. Here, we report an adaptation of the high-field asymmetric ion mobility spectrometry (FAIMS) coupled to mass spectrometry, and the establishment of a simple one step sample preparation coupled with gas-phase fractionation. The FAIMS approach substantially reduces manual sample handling, significantly shortens the MS instrument processing time, and produces unique protein identification and quantification approximating the commonly used IN-Seq method in less time.


Subject(s)
Ion Mobility Spectrometry , Proteome , Ion Mobility Spectrometry/methods , Tandem Mass Spectrometry/methods , Proteomics/methods , Specimen Handling
9.
bioRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865126

ABSTRACT

Skeletal muscle is a major regulatory tissue of whole-body metabolism and is composed of a diverse mixture of cell (fiber) types. Aging and several diseases differentially affect the various fiber types, and therefore, investigating the changes in the proteome in a fiber-type specific manner is essential. Recent breakthroughs in isolated single muscle fiber proteomics have started to reveal heterogeneity among fibers. However, existing procedures are slow and laborious requiring two hours of mass spectrometry time per single muscle fiber; 50 fibers would take approximately four days to analyze. Thus, to capture the high variability in fibers both within and between individuals requires advancements in high throughput single muscle fiber proteomics. Here we use a single cell proteomics method to enable quantification of single muscle fiber proteomes in 15 minutes total instrument time. As proof of concept, we present data from 53 isolated skeletal muscle fibers obtained from two healthy individuals analyzed in 13.25 hours. Adapting single cell data analysis techniques to integrate the data, we can reliably separate type 1 and 2A fibers. Sixty-five proteins were statistically different between clusters indicating alteration of proteins involved in fatty acid oxidation, muscle structure and regulation. Our results indicate that this method is significantly faster than prior single fiber methods in both data collection and sample preparation while maintaining sufficient proteome depth. We anticipate this assay will enable future studies of single muscle fibers across hundreds of individuals, which has not been possible previously due to limitations in throughput.

10.
J Allergy Clin Immunol Pract ; 11(5): 1421-1428, 2023 05.
Article in English | MEDLINE | ID: mdl-36958520

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) skin lesions are associated with oozing, bleeding, and erythema. This suggests that AD is associated with vascular changes. Dupilumab is an antibody to the alpha subunit of IL-4 receptor that demonstrates strong efficacy in the treatment of AD. IL-4 is known to reduce the permeability barrier function of vascular endothelium. OBJECTIVE: To examine the effects of dupilumab on vascular barrier function in AD skin. METHODS: Using proteomic analysis, we evaluated the plasma protein composition in skin tapes of lesional and nonlesional skin of adults and adolescents with moderate to severe AD over the course of a 16-week treatment with dupilumab and compared those with matched healthy subjects. RESULTS: At baseline, 115 plasma proteins were detected in AD skin and globally increased (1.5-fold or greater) compared with healthy skin. Functionally, these proteins included immunoglobulins, proteins involved in the coagulation process, enzymes, protease inhibitors, transport proteins, acute-phase proteins, complement proteins, and other pleiotropic proteins. Noteworthy, fibrinogens, fibronectin, and heme-binding proteins haptoglobin and hemopexin were among the top proteins originating from plasma and were increased in AD lesional versus healthy skin at baseline (P < .0001). Dupilumab treatment resulted in significantly reduced levels of plasma proteins in AD skin (P < .0001), with most dropping to levels seen in healthy skin or no longer detectable at week 16. CONCLUSIONS: Inhibition of IL-4/IL-13 action by dupilumab significantly reduces the efflux of plasma proteins into AD skin. Several of these proteins, such as fibrinogens and fibronectin, are known to enhance Staphylococcus aureus colonization and are associated with AD skin severity.


Subject(s)
Dermatitis, Atopic , Adult , Adolescent , Humans , Dermatitis, Atopic/drug therapy , Fibronectins , Interleukin-4 , Proteomics , Double-Blind Method , Antibodies, Monoclonal, Humanized/therapeutic use , Severity of Illness Index , Treatment Outcome
11.
iScience ; 26(2): 105987, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36756374

ABSTRACT

Methionine adenosyltransferase 1a (MAT1A) is responsible for hepatic S-adenosyl-L-methionine (SAMe) biosynthesis. Mat1a -/- mice have hepatic SAMe depletion, develop nonalcoholic steatohepatitis (NASH) which is reversed with SAMe administration. We examined temporal alterations in the proteome/phosphoproteome in pre-disease and NASH Mat1a -/- mice, effects of SAMe administration, and compared to human nonalcoholic fatty liver disease (NAFLD). Mitochondrial and peroxisomal lipid metabolism proteins were altered in pre-disease mice and persisted in NASH Mat1a -/- mice, which exhibited more progressive alterations in cytoplasmic ribosomes, ER, and nuclear proteins. A common mechanism found in both pre-disease and NASH livers was a hyperphosphorylation signature consistent with casein kinase 2α (CK2α) and AKT1 activation, which was normalized by SAMe administration. This was mimicked in human NAFLD with a metabolomic signature (M-subtype) resembling Mat1a -/- mice. In conclusion, we have identified a common proteome/phosphoproteome signature between Mat1a -/- mice and human NAFLD M-subtype that may have pathophysiological and therapeutic implications.

12.
bioRxiv ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-36711540

ABSTRACT

Identification and proteomic characterization of rare cell types within complex organ derived cell mixtures is best accomplished by label-free quantitative mass spectrometry. High throughput is required to rapidly survey hundreds to thousands of individual cells to adequately represent rare populations. Here we present parallelized nanoflow dual-trap single-column liquid chromatography (nanoDTSC) operating at 15 minutes of total run time per cell with peptides quantified over 11.5 minutes using standard commercial components, thus offering an accessible and efficient LC solution to analyze 96 single-cells per day. At this throughput, nanoDTSC quantified over 1,000 proteins in individual cardiomyocytes and heterogenous populations of single cells from aorta.

13.
Anal Chem ; 94(36): 12452-12460, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36044770

ABSTRACT

Proteomic analysis on the scale that captures population and biological heterogeneity over hundreds to thousands of samples requires rapid mass spectrometry methods, which maximize instrument utilization (IU) and proteome coverage while maintaining precise and reproducible quantification. To achieve this, a short liquid chromatography gradient paired to rapid mass spectrometry data acquisition can be used to reproducibly quantify a moderate set of analytes. High-throughput profiling at a limited depth is becoming an increasingly utilized strategy for tackling large sample sets but the time spent on loading the sample, flushing the column(s), and re-equilibrating the system reduces the ratio of meaningful data acquired to total operation time and IU. The dual-trap single-column configuration (DTSC) presented here maximizes IU in rapid analysis (15 min per sample) of blood and cell lysates by parallelizing trap column cleaning and sample loading and desalting with the analysis of the previous sample. We achieved 90% IU in low microflow (9.5 µL/min) analysis of blood while reproducibly quantifying 300-400 proteins and over 6000 precursor ions. The same IU was achieved for cell lysates and over 4000 proteins (3000 at CV below 20%) and 40,000 precursor ions were quantified at a rate of 15 min/sample. Thus, DTSC enables high-throughput epidemiological blood-based biomarker cohort studies and cell-based perturbation screening.


Subject(s)
Proteome , Proteomics , Biomarkers , Chromatography, Liquid/methods , Humans , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods
14.
Clin Infect Dis ; 75(11): 1940-1949, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35438777

ABSTRACT

BACKGROUND: The multiple mutations comprising the epsilon variant demonstrate the independent convergent evolution of severe acute respiratory syndrome coronavirus (SARS-CoV-2), with its spike protein mutation L452R present in the delta (L452R), kappa (L452R), and lambda (L452Q) variants. METHODS: Coronavirus disease 2019 (COVID-19) variants were detected in 1017 patients using whole-genome sequencing and were assessed for outcome and severity. The mechanistic effects of the epsilon versus non-epsilon variants were investigated using a multiomic approach including cellular response assays and paired cell and host transcriptomic and proteomic profiling. RESULTS: We found that patients carrying the epsilon variant had increased mortality risk but not increased hospitalizations (P < .02). Cells infected with live epsilon compared with non-epsilon virus displayed increased sensitivity to neutralization antibodies in all patients but a slightly protective response in vaccinated individuals (P < .001). That the epsilon SARS-CoV-2 variant is more infectious but less virulent is supported mechanistically in the down-regulation of viral processing pathways seen by multiomic analyses. Importantly, this paired transcriptomics and proteomic profiling of host cellular response to live virus revealed an altered leukocyte response and metabolic messenger RNA processing with the epsilon variant. To ascertain host response to SARS-CoV-2 infection, primary COVID-19-positive nasopharyngeal samples were transcriptomically profiled and revealed a differential innate immune response (P < .001) and an adjusted T-cell response in patients carrying the epsilon variant (P < .002). In fact, patients infected with SARS-CoV-2 and those vaccinated with the BNT162b2 vaccine have comparable CD4+/CD8+ T-cell immune responses to the epsilon variant (P < .05). CONCLUSIONS: While the epsilon variant is more infectious, by altering viral processing, we showed that patients with COVID-19 have adapted their innate immune response to this fitter variant. A protective T-cell response molecular signature is generated by this more transmissible variant in both vaccinated and unvaccinated patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , BNT162 Vaccine , Proteomics , Immunity, Innate
15.
J Biol Chem ; 297(3): 101005, 2021 09.
Article in English | MEDLINE | ID: mdl-34314685

ABSTRACT

Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293-based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.


Subject(s)
Acyltransferases/genetics , Cardiolipins/metabolism , Mitochondria/metabolism , Small Molecule Libraries/metabolism , Acyltransferases/metabolism , Barth Syndrome/genetics , Barth Syndrome/metabolism , HEK293 Cells , Humans , Lipidomics , Proteomics
16.
J Proteome Res ; 20(6): 3214-3229, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33939434

ABSTRACT

Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification level-fragment level-improved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set's most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.


Subject(s)
Algorithms , Proteomics , Mass Spectrometry , Reproducibility of Results , Workflow
17.
Mol Cell Proteomics ; 20: 100069, 2021.
Article in English | MEDLINE | ID: mdl-33716169

ABSTRACT

The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-ß-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.


Subject(s)
N-Acetylglucosaminyltransferases/metabolism , Oxidative Stress , Animals , Cells, Cultured , Fibroblasts/metabolism , Mice , N-Acetylglucosaminyltransferases/genetics , Protein Interaction Maps , Proteomics
18.
J Allergy Clin Immunol ; 146(6): 1367-1378, 2020 12.
Article in English | MEDLINE | ID: mdl-32360271

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) and food allergy (FA) are associated with skin barrier dysfunction. OBJECTIVE: Skin biomarkers are needed for skin barrier interventions studies. METHODS: In this study, skin tape strip (STS) samples were collected from nonlesional skin of 62 children in AD FA+, AD FA-, and nonatopic groups for mass spectrometry proteomic analysis. transepidermal water loss and allergic sensitization were assessed. STS proteomic analysis results were validated in an independent cohort of 41 adults with AD with and without FA versus nonatopic controls. RESULTS: A group of 45 proteins was identified as a principal component 1 (PC1) with the highest expression in AD FA+ STSs. This novel set of STS proteins was highly correlative to skin transepidermal water loss and allergic sensitization. PC1 proteins included keratin intermediate filaments; proteins associated with inflammatory responses (S100 proteins, alarmins, protease inhibitors); and glycolysis and antioxidant defense enzymes. Analysis of PC1 proteins expression in an independent adult AD cohort validated differential expression of STS PC1 proteins in the skin of adult patients with AD with the history of clinical reactions to peanut. CONCLUSIONS: STS analysis of nonlesional skin of AD children identified a cluster of proteins with the highest expression in AD FA+ children. The differential expression of STS PC1 proteins was confirmed in a replicate cohort of adult AD patients with FA to peanut, suggesting a unique STS proteomic endotype for AD FA+ that persists into adulthood. Collectively, PC1 proteins are associated with abnormalities in skin barrier integrity and may increase the risk of epicutaneous sensitization to food allergens.


Subject(s)
Allergens/toxicity , Dermatitis, Atopic/metabolism , Epidermis/metabolism , Gene Expression Regulation , Proteome/biosynthesis , Water/metabolism , Adult , Child , Dermatitis, Atopic/pathology , Epidermis/pathology , Female , Humans , Male , Prospective Studies , Proteomics
19.
Neurosci Res ; 151: 31-37, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30862443

ABSTRACT

Brain derived peptides function as signaling molecules in the brain and regulate various physiological and behavioral processes. The low abundance and atypical fragmentation of these brain derived peptides makes detection using traditional proteomic methods challenging. In this study, we introduce and validate a new methodology for the discovery of novel peptides derived from mammalian brain. This methodology combines ribosome profiling and mass spectrometry-based peptidomics. Using this framework, we have identified a novel peptide in mouse whole brain whose expression is highest in the basal ganglia, hypothalamus and amygdala. Although its functional role is unknown, it has been previously detected in peripheral tissue as a component of the mRNA decapping complex. Continued discovery and studies of novel regulating peptides in mammalian brain may also provide insight into brain disorders.


Subject(s)
Neuropeptides/isolation & purification , Proteomics/methods , Animals , Brain/metabolism , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Neuropeptides/analysis , Peptides , Ribosomes , Sequence Analysis, Protein
20.
Sci Transl Med ; 11(480)2019 02 20.
Article in English | MEDLINE | ID: mdl-30787169

ABSTRACT

Skin barrier dysfunction has been reported in both atopic dermatitis (AD) and food allergy (FA). However, only one-third of patients with AD have FA. The purpose of this study was to use a minimally invasive skin tape strip sampling method and a multiomics approach to determine whether children with AD and FA (AD FA+) have stratum corneum (SC) abnormalities that distinguish them from AD without FA (AD FA-) and nonatopic (NA) controls. Transepidermal water loss was found to be increased in AD FA+. Filaggrin and the proportion of ω-hydroxy fatty acid sphingosine ceramide content in nonlesional skin of children with AD FA+ were substantially lower than in AD FA- and NA skin. These abnormalities correlated with morphologic changes in epidermal lamellar bilayer architecture responsible for barrier homeostasis. Shotgun metagenomic studies revealed that the nonlesional skin of AD FA+ had increased abundance of Staphylococcus aureus compared to NA. Increased expression of keratins 5, 14, and 16 indicative of hyperproliferative keratinocytes was observed in the SC of AD FA+. The skin transcriptome of AD FA+ had increased gene expression for dendritic cells and type 2 immune pathways. A network analysis revealed keratins 5, 14, and 16 were positively correlated with AD FA+, whereas filaggrin breakdown products were negatively correlated with AD FA+. These data suggest that the most superficial compartment of nonlesional skin in AD FA+ has unique properties associated with an immature skin barrier and type 2 immune activation.


Subject(s)
Dermatitis, Atopic/diagnosis , Food Hypersensitivity/diagnosis , Skin/pathology , Adolescent , Area Under Curve , Child , Child, Preschool , Dendritic Cells/metabolism , Dermatitis, Atopic/pathology , Epidermis/metabolism , Filaggrin Proteins , Food Hypersensitivity/pathology , Humans , Intermediate Filament Proteins/metabolism , Keratins/metabolism , Lipids/analysis , Microbiota , Skin/microbiology , Surgical Tape , Transcriptome/genetics , Water Loss, Insensible
SELECTION OF CITATIONS
SEARCH DETAIL
...