Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26550, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463800

ABSTRACT

Microfluidic blood flow models have been instrumental to study the functions of blood platelets in hemostasis and arterial thrombosis. However, they are not suited to investigate the interactions of platelets with the foreign surfaces of medical devices such as stents, mainly because of the dimensions and geometry of the microfluidic channels. Indeed, the channels of microfluidic chips are usually rectangular and rarely exceed 50 to 100 µm in height, impairing the insertion of clinically used stents. To fill this gap, we have developed an original macrofluidic flow system, which precisely reproduces the size and geometry of human vessels and therefore represents a biomimetic perfectly suited to insert a clinical stent and study its interplay with blood cells. The system is a circular closed loop incorporating a macrofluidic flow chamber made of silicone elastomer, which can mimic the exact dimensions of any human vessel, including the coronary, carotid or femoral artery. These flow chambers allow the perfect insertion of stents as they are implanted in patients. Perfusion of whole blood anticoagulated with hirudin through the device at relevant flow rates allows one to observe the specific accumulation of fluorescently labeled platelets on the stent surface using video-microscopy. Scanning electron microscopy revealed the formation of very large thrombi composed of tightly packed activated platelets on the stents.

2.
Ann Biomed Eng ; 52(6): 1665-1677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459196

ABSTRACT

Prosthetic heart valve (PHV) replacement has increased the survival rate and quality of life for heart valve-diseased patients. However, PHV thrombosis remains a critical problem associated with these procedures. To better understand the PHV flow-related thrombosis problem, appropriate experimental models need to be developed. In this study, we present an in vitro fibrin clot model that mimics clot accumulation in PHVs under relevant hydrodynamic conditions while allowing real-time imaging. We created 3D-printed mechanical aortic valve models that were inserted into a transparent glass aorta model and connected to a system that simulates human aortic flow pulse and pressures. Thrombin was gradually injected into a circulating fibrinogen solution to induce fibrin clot formation, and clot accumulation was quantified via image analysis. The results of valves positioned in a normal versus a tilted configuration showed that clot accumulation correlated with the local flow features and was mainly present in areas of low shear and high residence time, where recirculating flows are dominant, as supported by computational fluid dynamic simulations. Overall, our work suggests that the developed method may provide data on flow-related clot accumulation in PHVs and may contribute to exploring new approaches and valve designs to reduce valve thrombosis.


Subject(s)
Fibrin , Heart Valve Prosthesis , Thrombin , Thrombosis , Humans , Fibrin/metabolism , Models, Cardiovascular , Perfusion , Aortic Valve/surgery
3.
APL Bioeng ; 5(2): 026103, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33948527

ABSTRACT

Organ-on-a-Chip platforms provide rich opportunities to observe interactions between different cell types under in vivo-like conditions, i.e., in the presence of flow. Yet, the costs and know-how required for the fabrication and implementation of these platforms restrict their accessibility. This study introduces and demonstrates a novel Insert-Chip: a microfluidic device that provides the functionality of an Organ-on-a-Chip platform, namely, the capacity to co-culture cells, expose them to flow, and observe their interactions-yet can easily be integrated into standard culture systems (e.g., well plates or multi-electrode arrays). The device is produced using stereolithograpy 3D printing and is user-friendly and reusable. Moreover, its design features overcome some of the measurement and imaging challenges characterizing standard Organ-on-a-Chip platforms. We have co-cultured endothelial and epithelial cells under flow conditions to demonstrate the functionality of the device. Overall, this novel microfluidic device is a promising platform for the investigation of biological functions, cell-cell interactions, and response to therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...