Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Spinal Cord ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627568

ABSTRACT

DESIGN: Prospective diagnostic study. OBJECTIVES: Anatomical evaluation and graduation of the severity of spinal stenosis is essential in degenerative cervical spine disease. In clinical practice, this is subjectively categorized on cervical MRI lacking an objective and reliable classification. We implemented a fully-automated quantification of spinal canal compromise through 3D T2-weighted MRI segmentation. SETTING: Medical Center - University of Freiburg, Germany. METHODS: Evaluation of 202 participants receiving 3D T2-weighted MRI of the cervical spine. Segments C2/3 to C6/7 were analyzed for spinal cord and cerebrospinal fluid space volume through a fully-automated segmentation based on a trained deep convolutional neural network. Spinal canal narrowing was characterized by relative values, across sever segments as adapted Maximal Canal Compromise (aMCC), and within the index segment as adapted Spinal Cord Occupation Ratio (aSCOR). Additionally, all segments were subjectively categorized by three observers as "no", "relative" or "absolute" stenosis. Computed scores were applied on the subjective categorization. RESULTS: 798 (79.0%) segments were subjectively categorized as "no" stenosis, 85 (8.4%) as "relative" stenosis, and 127 (12.6%) as "absolute" stenosis. The calculated scores revealed significant differences between each category (p ≤ 0.001). Youden's Index analysis of ROC curves revealed optimal cut-offs to distinguish between "no" and "relative" stenosis for aMCC = 1.18 and aSCOR = 36.9%, and between "relative" and "absolute" stenosis for aMCC = 1.54 and aSCOR = 49.3%. CONCLUSION: The presented fully-automated segmentation algorithm provides high diagnostic accuracy and objective classification of cervical spinal stenosis. The calculated cut-offs can be used for convenient radiological quantification of the severity of spinal canal compromise in clinical routine.

2.
J Neurosurg Case Lessons ; 7(8)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373296

ABSTRACT

BACKGROUND: The optimal surgical approach to treat neurogenic thoracic outlet syndrome (nTOS) depends on the individual patient's anatomy as well as the surgeon's experience. The authors present a minimally invasive posterior approach for the resection of a prominent transverse process to reduce local muscular trauma. OBSERVATIONS: A 19-year-old female presented with painful sensations in the right arm and severe fine-motor skill dysfunction in the right hand, each of which had been present for several years. Further examination confirmed affected C8 and T1 areas, and imaging showed an elongated C7 transverse process displacing the lower trunk of the brachial plexus. Decompression of the plexus structures by resection of the C7 transverse process was indicated, owing to persistent neurological effects. Surgery was performed using a minimally invasive posterior approach in which the nuchal soft tissue was bluntly dissected by dilatators and resection of the transverse process was done microscopically through a tubular retractor. The postoperative course showed a sufficient reduction of pain and paresthesia. LESSONS: The authors describe a minimally invasive posterior approach for the treatment of nTOS with the aim of providing indirect relief of strain on brachial plexus structures. The advantages of this technique include a small skin incision and minor soft tissue damage.

3.
Neuroradiology ; 65(10): 1545-1554, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37386202

ABSTRACT

PURPOSE: Detection of T2 hyperintensities in suspected degenerative cervical myelopathy (DCM) is done subjectively in clinical practice. To gain objective quantification for dedicated treatment, signal intensity analysis of the spinal cord is purposeful. We investigated fully automated quantification of the T2 signal intensity (T2-SI) of the spinal cord using a high-resolution MRI segmentation. METHODS: Matched-pair analysis of prospective acquired cervical 3D T2-weighted sequences of 114 symptomatic patients and 88 healthy volunteers. Cervical spinal cord was segmented automatically through a trained convolutional neuronal network with subsequent T2-SI registration slice-by-slice. Received T2-SI curves were subdivided for each cervical level from C2 to C7. Additionally, all levels were subjectively classified concerning a present T2 hyperintensity. For T2-positive levels, corresponding T2-SI curves were compared to curves of age-matched volunteers at the identical level. RESULTS: Forty-nine patients showed subjective T2 hyperintensities at any level. The corresponding T2-SI curves showed higher signal variabilities reflected by standard deviation (18.51 vs. 7.47 a.u.; p < 0.001) and range (56.09 vs. 24.34 a.u.; p < 0.001) compared to matched controls. Percentage of the range from the mean absolute T2-SI per cervical level, introduced as "T2 myelopathy index" (T2-MI), was correspondingly significantly higher in T2-positive segments (23.99% vs. 10.85%; p < 0.001). ROC analysis indicated excellent differentiation for all three parameters (AUC 0.865-0.920). CONCLUSION: This fully automated T2-SI quantification of the spinal cord revealed significantly increased signal variability for DCM patients compared to healthy volunteers. This innovative procedure and the applied parameters showed sufficient diagnostic accuracy, potentially diagnosing radiological DCM more objective to optimize treatment recommendation. TRIAL REGISTRATION: DRKS00012962 (17.01.2018) and DRKS00017351 (28.05.2019).


Subject(s)
Spinal Cord Compression , Spinal Cord Diseases , Humans , Prospective Studies , Cervical Vertebrae/diagnostic imaging , Spinal Cord Diseases/diagnostic imaging , Spinal Cord/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
Neurology ; 100(7): e651-e660, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36357188

ABSTRACT

BACKGROUND AND OBJECTIVES: Spontaneous intracranial hypotension (SIH) is characterized by loss of CSF volume. We hypothesize that in this situation of low volume, a larger CSF flow and spinal cord motion at the upper spine can be measured by noninvasive phase contrast MRI. METHODS: A prospective, age-, sex-, and body mass index (BMI)-matched controlled cohort study on patients with SIH presenting with spinal longitudinal extradural fluid collection (SLEC) was conducted from October 2021 to February 2022. Cardiac-gated 2D phase contrast MRI sequences were acquired at segment C2/C3, and C5/C6 for CSF flow, and spinal cord motion analysis. Data processing was fully automated. CSF flow and spinal cord motion were analyzed by peak-to-peak amplitude and total displacement per segment and heartbeat, respectively. Clinical data included age, height, BMI, duration of symptoms, Bern score according to Dobrocky et al., and type of the spinal CSF leak according to Schievink et al. Groups were compared via the Mann-Whitney U test; multiple linear regression analysis was performed to address possible relations. RESULTS: Twenty patients with SIH and 40 healthy controls were analyzed; each group consisted of 70% women. Eleven patients with SIH presented with type 1 leak, 8 with type 2, and 1 was indeterminate. CSF flow per heartbeat was increased at C2/C3 (peak-to-peak amplitude 65.68 ± 18.3 vs 42.50 ± 9.8 mm/s, total displacement 14.32 ± 3.5 vs 9.75 ± 2.7 mm, p < 0.001, respectively). Craniocaudal spinal cord motion per heartbeat was larger at segment C2/C3 (peak-to-peak amplitude 7.30 ± 2.4 vs 5.82 ± 2.0 mm/s, total displacement 1.01 ± 0.4 vs 0.74 ± 0.4 mm, p = 0.006, respectively) and at segment C5/C6 (total displacement 1.41 ± 0.7 vs 0.97 ± 0.4 mm, p = 0.021). DISCUSSION: SLEC-positive patients with SIH show higher CSF flow and higher spinal cord motion at the upper cervical spine. This increased craniocaudal motion of the spinal cord per heartbeat might produce increased mechanical strain on neural tissue and adherent structures, which may be a mechanism leading to cranial nerve dysfunction, neck pain, and stiffness in SIH. Noninvasive phase contrast MRI of CSF flow and spinal cord motion is a promising diagnostic tool in SIH. TRIAL REGISTRATION INFORMATION: German Clinical Trials Register, identification number: DRKS00017351. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that noninvasive phase contrast MRI of the upper spine identifies differences in CSF flow and spinal cord motion in patients with SIH compared with healthy controls.


Subject(s)
Intracranial Hypotension , Female , Humans , Male , Cervical Vertebrae , Cohort Studies , Intracranial Hypotension/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Spinal Cord/diagnostic imaging
5.
Neuroradiology ; 64(3): 627-630, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35106631

ABSTRACT

CSF-venous fistulas - initially described in 2014 - are a significant cause of spontaneous intracranial hypotension. Dynamic lateral decubitus digital subtraction and/or CT myelography typically show a hyperdense paraspinal vein. In case of a central drainage toward the internal vertebral venous plexus, it is the "hyperdense basivertebral vein" which should be searched for carefully.


Subject(s)
Fistula , Intracranial Hypotension , Brachiocephalic Veins , Cerebrospinal Fluid Leak/complications , Fistula/complications , Humans , Myelography
6.
Spinal Cord ; 60(7): 655-663, 2022 07.
Article in English | MEDLINE | ID: mdl-34966172

ABSTRACT

DESIGN: Prospective diagnostic study. OBJECTIVES: Primary imaging-based diagnosis of spinal cord tumor-suspected lesions is often challenging. The identification of the definite entity is crucial for dedicated treatment and therefore reduction of morbidity. The aim of this trial was to investigate specific quantitative signal patterns to differentiate unclear intramedullary tumor-suspected lesions based on diffusion tensor imaging (DTI). SETTING: Medical Center - University of Freiburg, Germany. METHODS: Forty patients with an unclear tumor-suspected lesion of the spinal cord prospectively underwent DTI. Primary diagnosis was determined by histological or clinical work-up or remained indeterminate with follow-up. DTI metrics (FA/ADC) were evaluated at the central lesion area, lesion margin, edema, and normal spinal cord and compared between different diagnostic groups (ependymomas, other spinal cord tumors, inflammations). RESULTS: Mean DTI metrics for all spinal cord tumors (n = 18) showed significantly reduced FA and increased ADC values compared to inflammatory lesions (n = 8) at the lesion margin (p < 0.001, p = 0.001) and reduced FA at the central lesion area (p < 0.001). There were no significant differences comparing the neoplastic subgroups of ependymomas (n = 10) and other spinal cord tumors (n = 8), but remaining differences for both compared to the inflammation subgroup. We found significant higher ADC (p = 0.040) and a trend to decreased FA (p = 0.081) for ependymomas compared to inflammations at the edema. CONCLUSION: Even if distinct differentiation of ependymomas from other spinal cord neoplasms was not possible based on quantitative DTI metrics, FA and ADC were feasible to separate inflammatory lesions. This may avoid unnecessary surgery in patients with unclear intramedullary tumor-suspected lesions.


Subject(s)
Ependymoma , Spinal Cord Diseases , Spinal Cord Injuries , Spinal Cord Neoplasms , Diffusion Tensor Imaging/methods , Ependymoma/diagnostic imaging , Ependymoma/pathology , Humans , Inflammation/diagnostic imaging , Inflammation/pathology , Prospective Studies , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Neoplasms/diagnostic imaging , Spinal Cord Neoplasms/pathology
7.
Neuroradiology ; 64(3): 443-452, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34839379

ABSTRACT

Focal cortical dysplasia (FCD) are histopathologically categorized in ILAE type I to III. Mild malformations of cortical development (mMCD) including those with oligodendroglial hyperplasia (MOGHE) are to be integrated into this classification yet. Only FCD type II have distinctive MRI and molecular genetics alterations so far. Subtle FCD including FCD type II located in the depth of a sulcus are often overlooked requiring the use of dedicated sequences (MP2RAGE, FLAWS, EDGE) and/or voxel (VBM)- or surface-based (SBM) postprocessing. The added value of 7 Tesla MRI has to be proven yet.


Subject(s)
Epilepsy , Malformations of Cortical Development, Group I , Malformations of Cortical Development , Humans , Magnetic Resonance Imaging , Malformations of Cortical Development/diagnostic imaging
8.
J Clin Med ; 10(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34501236

ABSTRACT

In degenerative cervical myelopathy (DCM), focally increased spinal cord motion has been observed for C5/C6, but whether stenoses at other cervical segments lead to similar pathodynamics and how severity of stenosis, age, and gender affect them is still unclear. We report a prospective matched-pair controlled trial on 65 DCM patients. A high-resolution 3D T2 sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) and a phase-contrast magnetic resonance imaging (MRI) sequence were performed and automatically segmented. Anatomical and spinal cord motion data were assessed per segment from C2/C3 to C7/T1. Spinal cord motion was focally increased at a level of stenosis among patients with stenosis at C4/C5 (n = 14), C5/C6 (n = 33), and C6/C7 (n = 10) (p < 0.033). Patients with stenosis at C2/C3 (n = 2) and C3/C4 (n = 6) presented a similar pattern, not reaching significance. Gender was a significant predictor of higher spinal cord dynamics among men with stenosis at C5/C6 (p = 0.048) and C6/C7 (p = 0.033). Age and severity of stenosis did not relate to spinal cord motion. Thus, the data demonstrates focally increased spinal cord motion depending on the specific level of stenosis. Gender-related effects lead to dynamic alterations among men with stenosis at C5/C6 and C6/C7. The missing relation of motion to severity of stenosis underlines a possible additive diagnostic value of spinal cord motion analysis in DCM.

9.
Clin Neuroradiol ; 31(4): 1021-1027, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34019101

ABSTRACT

PURPOSE: The head circumference is typically used as a surrogate parameter for the development of the central nervous system and intracranial structures and is an important clinical parameter in neuropediatrics. As magnetic resonance images (MRI) can be freely zoomed, visual analysis of the head size often relies on impressions, such as the craniofacial ratio or a simplified gyral pattern. Aim of this study was to validate an MRI-based method to measure the head circumference. METHODS: Head circumferences of 85 children (41 microcephalies, 22 macrocephalies and 22 normal controls; 47 male, mean age 3.22 ± 2.45 years, range 0.19-10.42 years) were retrospectively measured using sagittal 3D-T1w (MPRAGE) data sets. Three readers independently placed an ovoid region of interest in an axial plane starting from the supraorbital bulge and covering the largest supra-auricular head circumference. Clinical measurements of the head circumference taken within an acceptable period served for comparative purposes. Reliability was assessed by calculating the total error of measurement (TEM) and the intraclass correlation coefficient (ICC). RESULTS: A close correlation was found between MRI-based and clinical measurements. The interrater reliability was excellent (ICC 0.985, 95% confidence interval 0.952-0.993). Absolute TEM ranged from 0.47-0.75, resulting in relative TEM ranging from 1.0-1.6%. Thus, TEMs were classified as acceptable. The mean accuracy of MRI-based measurements was high at 0.94. CONCLUSION: The head circumference can be reliably determined with a simple measurement on 3D sequences using multiplanar reformations. This approach may help to diagnose microcephaly and macrocephaly, especially when the head circumference is not reported by the referring physician.


Subject(s)
Magnetic Resonance Imaging , Microcephaly , Cephalometry , Child , Child, Preschool , Head/diagnostic imaging , Humans , Infant , Male , Reproducibility of Results , Retrospective Studies
10.
J Neurosci ; 34(31): 10438-52, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-25080602

ABSTRACT

In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4-8 Hz) modulated enhancement of DLPFC γ-band (30-100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC.


Subject(s)
Adaptation, Physiological/physiology , Brain Mapping , Brain Waves/physiology , Conflict, Psychological , Prefrontal Cortex/physiopathology , Acoustic Stimulation , Auditory Perception/physiology , Decision Making , Electrodes, Implanted , Electroencephalography , Epilepsy/pathology , Female , Humans , Male , Neuropsychological Tests , Reaction Time/physiology , Spectrum Analysis , Time Factors
11.
Behav Brain Res ; 271: 129-39, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24928767

ABSTRACT

Alexithymia is a personality trait that involves difficulties identifying emotions and describing feelings. It is hypothesized that this includes facial emotion recognition but limited knowledge exists about possible neural correlates of this assumed deficit. We hence tested thirty-seven healthy subjects with either a relatively high or low degree of alexithymia (HDA versus LDA), who performed in a reliable and standardized test of facial emotion recognition (FEEL, Facially Expressed Emotion Labeling) in the functional MRI. LDA subjects had significantly better emotion recognition scores and showed relatively more activity in several brain areas associated with alexithymia and emotional awareness (anterior cingulate cortex), and the extended system of facial perception concerned with aspects of social communication and emotion (amygdala, insula, striatum). Additionally, LDA subjects had more activity in the visual area of social perception (posterior part of the superior temporal sulcus) and the inferior frontal cortex. HDA subjects, on the other hand, exhibited greater activity in the superior parietal lobule. With differences in behaviour and brain responses between two groups of otherwise healthy subjects, our results indirectly support recent conceptualizations and epidemiological data, that alexithymia is a dimensional personality trait apparent in clinically healthy subjects rather than a categorical diagnosis only applicable to clinical populations.


Subject(s)
Affective Symptoms/psychology , Brain/physiopathology , Emotions , Facial Expression , Magnetic Resonance Imaging , Pattern Recognition, Visual , Adolescent , Adult , Affective Symptoms/physiopathology , Female , Humans , Male , Psychological Tests , Social Perception , Young Adult
12.
Hippocampus ; 24(7): 892-902, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24753358

ABSTRACT

Recent findings suggest that repetition effects interact with episodic memory processes that are putatively supported by the hippocampus. Thus, the formation or refinement of episodic memories may be related to a modulating signal from the hippocampus to the neocortex which leads to sparser or more extended stimulus representations (repetition suppression or enhancement), depending on the type of stimulus and the brain site. This framework suggests that hippocampal activity during the initial presentation of a stimulus correlates with the magnitude of repetition effects. Here, we tested this hypothesis in an fMRI study in which associations between faces and buildings were presented twice. BOLD responses showed repetition suppression in fusiform face area (FFA) and parahippocampal place area (PPA), most likely due to a refinement of existing category representations. Hippocampal activity during the first presentations was correlated with the amount of repetition suppression, in particular in the FFA. Repetition enhancement effects were observed on BOLD responses in posterior parietal cortex, possibly related to the formation of new representations of associative stimuli. The magnitude of parietal BOLD repetition effects depended on successful memory formation. These findings suggest that both repetition enhancement and repetition suppression effects are influenced by a modulating signal from the hippocampus.


Subject(s)
Association Learning/physiology , Hippocampus/physiology , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Memory/physiology , Neuroimaging , Parahippocampal Gyrus/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...