Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiol Spectr ; 11(1): e0443722, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36692293

ABSTRACT

The emergence and spread of antimicrobial resistance (AMR) in Gram-negative pathogens, such as carbapenem-resistant Pseudomonas aeruginosa, pose an increasing threat to health care. Patients with immunodeficiencies or chronic pulmonary disease, like cystic fibrosis (CF), are particularly vulnerable to Pseudomonas infections and depend heavily on antibiotic therapy. To broaden limited treatment options, this study evaluated the potency of the recently licensed drugs ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), and cefiderocol (FDC) as well as two novel preclinical antibiotics, darobactins B (DAR B) and B9 (DAR B9), against clinical P. aeruginosa isolates derived from respiratory samples of CF patients. We observed high levels of resistance to all three newly licensed drugs, with cefiderocol exhibiting the best activity. From the 66 investigated P. aeruginosa isolates, a total of 53% were resistant to CZA, 49% to C/T, and 30% to FDC. Strikingly, 52 of the evaluated isolates were obtained from CF patients prior to market introduction of the drugs. Thus, our results suggest that resistance to CZA, C/T, and FDC may be due to preexisting resistance mechanisms. On the other hand, our two novel preclinical compounds performed better than (CZA and C/T) or close to (FDC) the licensed drugs-most likely due to the novel mode of action. Thus, our results highlight the necessity of global consistency in the area of antibiotic stewardship to prevent AMR from further impairing the potency of antibiotics in clinical practice. Ultimately, this study demonstrates the urgency to support the development of novel antimicrobials, preferably with a new mode of action such as darobactins B and B9, two very promising antimicrobial compounds for the treatment of critically ill patients suffering from multidrug-resistant Gram-negative (MRGN) infections. IMPORTANCE Antimicrobial resistance (AMR) represents an ever increasing threat to the health care system. Even recently licensed drugs are often not efficient for the treatment of infections caused by Gram-negative bacteria, like Pseudomonas aeruginosa, a causative agent of lung infections. To address this unmet medical need, innovative antibiotics, which possess a new mode of action, need to be developed. Here, the antibiogram of clinical isolates derived from cystic fibrosis patients was generated and new bicyclic heptapeptides, which inhibit the outer membrane protein BamA, exhibited strong activity, also against multidrug-resistant isolates.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Adolescent , Child , Pseudomonas aeruginosa , Cystic Fibrosis/complications , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Tazobactam/pharmacology , Tazobactam/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Cefiderocol
2.
Methods Mol Biol ; 2601: 55-73, 2023.
Article in English | MEDLINE | ID: mdl-36445579

ABSTRACT

Natural product discovery campaigns aim to identify compounds with the desired bioactivity, for example, metabolites with antibiotic activity. The major driver of many projects is still the finding of bioactive extracts, which will be followed up to isolate the activity-causing agent as pure compound. However, nowadays also additional strategies can be used to increase the probability of success. Metabolomic approaches indicate chemical novelty, and genomics allow identification of putative biosynthetic gene clusters (BGCs) of interest, even though the corresponding metabolite is unknown. Whatever the entry to the campaign is, at one point the scientists need to have the desired compound in hand to analyze it in detail. Hence, expression must be achieved to yield the compound of interest, either to link it to the corresponding putative BGC or to overcome the bottleneck of sparse compound supply. Therefore, homologous and heterologous expression approaches are feasible ways forward to increase production yield, shorten fermentation time, or to get BGCs expressed at all for which no suitable fermentation condition was identified.In this chapter, expression approaches in bacteria are described to biosynthesize compounds of interest. Homologous expression, by genetic manipulation of the original Streptomyces producer strain, and heterologous expression in the microbial workhorse Escherichia coli are exemplified.


Subject(s)
Anti-Infective Agents , Escherichia coli Infections , Streptomyces , Humans , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Streptomyces/genetics , Escherichia coli/genetics
3.
J Nat Prod ; 85(4): 888-898, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35239335

ABSTRACT

The azinothricin family comprises several cyclic hexadepsipeptides with diverse pharmacological bioactivities, including antimicrobial, antitumoral, and apoptosis induction. In this work, using a genome mining approach, a biosynthetic gene cluster encoding an azinothricin-like compound was identified from the Streptomyces sp. s120 genome sequence (pop BGC). Comparative MS analysis of extracts from the native producer and a knockout mutant led to the identification of metabolites corresponding to the pop BGC. Furthermore, regulatory elements of the BGC were identified. By overexpression of an LmbU-like transcriptional activator, the production yield of 1 and 2 was increased, enabling isolation and structure elucidation of polyoxyperuin A seco acid (1) and polyoxyperuin A (2) using high-resolution mass spectrometry and NMR spectroscopy. Compound 1 exhibited a low antibiotic effect against Micrococcus luteus, while 2 showed a strong Gram-positive antibiotic effect in a micro-broth-dilution assay.


Subject(s)
Streptomyces , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Multigene Family , Streptomyces/genetics , Streptomyces/metabolism
4.
Metab Eng ; 66: 123-136, 2021 07.
Article in English | MEDLINE | ID: mdl-33872780

ABSTRACT

Darobactin A (DAR) is a ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotic, which was initially identified from bacteria belonging to the genus Photorhabdus. In addition, the corresponding biosynthetic gene cluster (BGC) was identified and subsequently detected in several bacteria genera. DAR represents a highly promising lead structure for the development of novel antibacterial therapeutic agents. It targets the outer membrane protein BamA and is therefore specific for Gram-negative bacteria. This, together with the convincing in vivo activities in mouse infection models, makes it a particular promising candidate for further research. To improve compound supply for further investigation of DAR and to enable production of novel derivatives, establishment of an efficient and versatile microbial production platform for these class of RiPP antibiotics is highly desirable. Here we describe design and construction of a heterologous production and engineering platform for DAR, which will ensure production yield and facilitates structure modification approaches. The known Gram-negative workhorses Escherichia coli and Vibrio natriegens were tested as heterologous hosts. In addition to that, DAR producer strains were generated and optimization of the expression constructs yielded production titers of DAR showing around 10-fold increase and 5-fold decrease in fermentation time compared to the original product description. We also report the identification of the minimal DAR BGC, since only two genes were necessary for heterologous production of the RiPP.


Subject(s)
Multigene Family , Vibrio , Animals , Anti-Bacterial Agents , Mice , Multigene Family/genetics , Peptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL