Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37526517

ABSTRACT

A hyperspectral camera (HSC-type Specim IQ) has been applied at the linear plasma device PSI-2 under steady-state conditions. The camera has the capacity of hyperspectral imaging (HSI) with the dimension of a data array 512 × 512 × 204 (x, y, λ) covering the spectral span from 400 to 1000 nm with moderate average spectral resolution (FWHM ∼7 nm). After radiometric calibration and background/continuum emission subtraction, two main applications of the camera, (i) plasma diagnostics in helium (He) plasmas and (ii) plasma-material interaction studies with tungsten (W) targets in neon (Ne) plasmas, have been carried out. The measurements were complemented by a movable Langmuir double probe system (LP) measuring electron temperature (Te) and electron density (ne) in radial direction r and a fiber-coupled cross-dispersion spectrometer with high spectral resolution (Spectrelle) recording neutral He, W, and Ne emission lines over the full plasma column. (i) Two-dimensional (2D) imaging of Te and ne radial profiles in axial direction z of the He plasma column were for the first time obtained by the regression analysis of Te and ne (from LP) and six He I line ratios (from HSC). The spatially resolved plasma parameters covered in these studies range between Te ∼ 0.8-13.4 eV and ne ∼ 0.2 × 1018-3.9 × 1018 m-3 and permit a reconstruction of the plasma conditions in PSI-2 in 2D without LP perturbation. (ii) W sputtering was studied in situ in Ne plasmas exposing W target samples (negatively biased at 100 V) under perpendicular Ne plasma impact. Simultaneously, the 2D distributions of W (W I line at 429.5 nm) in front of the target and the 2D Ne plasma distribution (Ne I line at 703.2 nm) were recorded with complete spectral separation as confirmed by the Spectrelle spectrometer. This permits the simultaneous measurement of the neutral W penetration and its angular distribution induced in the sputtering process and of the impinging plasma distribution. The HSI technique offers, despite a few technical drawbacks, such as the moderate spectral resolution and poor time resolution, a new possibility to distinguish multiple emission lines from plasma and impurities and complements the portfolio of existing Optical Emission Spectroscopy techniques, providing a good compromise regarding spectral, spatial, and temporal resolution.

2.
Rev Sci Instrum ; 89(6): 063112, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960554

ABSTRACT

The efficient and reliable control and monitoring of the quality of the optical properties of mirrors is an open problem in laboratory plasmas. Until now, the measurement of the reflectance of the first mirrors was based on the methods that require additional light calibration sources. We propose a new technique based on the ratio of the red- and blue-shifted emission signals of the reflected hydrogen atoms which enables the in situ measurement of the spectral reflectance of metallic mirrors in low-density Ar-H or Ar-D plasmas. The spectral reflectance coefficients were measured for C, Al, Ag, Fe, Pd, Ti, Sn, Rh, Mo, and W mirrors installed in the linear magnetized plasma device PSI-2 operating in the pressure range of 0.01-0.1 Pa. The results are obtained for the Hα line using the emission of fast atoms induced by excitation of H atoms through Ar at a plasma-solid interface by applying a negative potential U = -80, …, -220 V to the mirror. The agreement between the measured and theoretical data of reflectance is found to be within 10% for the investigated materials (except for C). The spectra also allow us to efficiently determine the material of the mirror.

SELECTION OF CITATIONS
SEARCH DETAIL