Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Nat Metab ; 5(8): 1352-1363, 2023 08.
Article in English | MEDLINE | ID: mdl-37592007

ABSTRACT

Survival under selective pressure is driven by the ability of our brain to use sensory information to our advantage to control physiological needs. To that end, neural circuits receive and integrate external environmental cues and internal metabolic signals to form learned sensory associations, consequently motivating and adapting our behaviour. The dopaminergic midbrain plays a crucial role in learning adaptive behaviour and is particularly sensitive to peripheral metabolic signals, including intestinal peptides, such as glucagon-like peptide 1 (GLP-1). In a single-blinded, randomized, controlled, crossover basic human functional magnetic resonance imaging study relying on a computational model of the adaptive learning process underlying behavioural responses, we show that adaptive learning is reduced when metabolic sensing is impaired in obesity, as indexed by reduced insulin sensitivity (participants: N = 30 with normal insulin sensitivity; N = 24 with impaired insulin sensitivity). Treatment with the GLP-1 receptor agonist liraglutide normalizes impaired learning of sensory associations in men and women with obesity. Collectively, our findings reveal that GLP-1 receptor activation modulates associative learning in people with obesity via its central effects within the mesoaccumbens pathway. These findings provide evidence for how metabolic signals can act as neuromodulators to adapt our behaviour to our body's internal state and how GLP-1 receptor agonists work in clinics.


Subject(s)
Insulin Resistance , Liraglutide , Male , Humans , Female , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide 1 , Obesity/drug therapy
2.
Inn Med (Heidelb) ; 64(8): 752-757, 2023 Aug.
Article in German | MEDLINE | ID: mdl-37016079

ABSTRACT

The humoral and cellular immune responses to antigen stimulation, vaccinations and infections differ between women and men. Genetic, epigenetic and hormonal factors contribute to the sex-specific immunity. The expression of genes on the X­chromosome and the effect of sex hormones substantially influence the immune defence against infections. Females show stronger cellular and humoral immune responses to infections than males, but the enhanced immune response often leads to aberrant inflammatory reactions and autoimmune diseases. Men are principally more prone to bacterial, viral and fungal infections and more often show severe disease courses. In contrast, a more reactive female immune system results in significantly more adverse reactions to vaccinations. In order to be able to better identify the multiple sex-specific that have an influence on the immune system, sex-specific differences should be investigated in a differentiated way. The better understanding of the sex-specific differences in the immune response will have a long-term influence on the prevention, diagnostics and treatment of infectious diseases, and will ultimately contribute to improving healthcare of both women and men.


Subject(s)
Communicable Diseases , Sex Characteristics , Humans , Male , Female , Gonadal Steroid Hormones , Immune System/metabolism , Immunity, Humoral
3.
Cell Rep Med ; 4(1): 100897, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36652907

ABSTRACT

Feeding behavior must be continuously adjusted to match energy needs. Recent discoveries in murine models identified uridine as a regulator of energy balance. Here, we explore its contribution to the complex control of food intake in humans by administering a single dose of uridine monophosphate (UMP; 0.5 or 1 g) to healthy participants in two placebo-controlled studies designed to assess food behavior (registration: DRKS00014874). We establish that endogenous circulating uridine correlates with hunger and ensuing food consumption. It also dynamically decreases upon caloric ingestion, prompting its potential role in a negative feedback loop regulating energy intake. We further demonstrate that oral UMP administration temporarily increases circulating uridine and-when within the physiological range-enhances hunger and caloric intake proportionally to participants' basal energy needs. Overall, uridine appears as a potential target to tackle dysfunctions of feeding behavior in humans.


Subject(s)
Energy Intake , Hunger , Humans , Animals , Mice , Uridine , Energy Intake/physiology , Hunger/physiology , Uridine Monophosphate , Eating
4.
Infection ; 51(2): 459-464, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35759174

ABSTRACT

PURPOSE: School closures have been used as part of lockdown strategies to contain the spread of SARS-CoV-2, adversely affecting children's health and education. To ensure the accessibility of educational institutions without exposing society to the risk of increased transmissions, it is essential to establish SARS-CoV-2 testing strategies that are child-friendly, scalable and implementable in a daily school routine. Self-sampling using non-invasive saliva swabs combined with pooled RT-qPCR testing (Lolli-Method) has been proven to be a sensitive method for the detection of SARS-CoV-2. METHODS: We conducted a pilot project in Cologne, Germany, designed to determine the feasibility of a large-scale rollout of the Lolli-Method for testing without any additional on-site medical staff in schools. Over a period of three weeks, students from 22 schools were sampled using the Lolli-Method. At the end of the project, teachers were asked to evaluate the overall acceptance of the project. RESULTS: We analyzed a total of 757 pooled RT-qPCRs obtained from 8,287 individual swabs and detected 7 SARS-CoV-2 infected individuals. The Lolli-Method was shown to be a feasible and accepted testing strategy whose application is only slightly disruptive to the daily school routine. CONCLUSION: Our observations suggest that the Lolli-Method in combination with pooled RT-qPCR can be implemented for SARS-CoV-2 surveillance in daily school routine, applicable on a large scale.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pilot Projects , SARS-CoV-2/genetics , COVID-19 Testing , COVID-19/diagnosis , COVID-19/epidemiology , Communicable Disease Control , Schools
5.
Nat Commun ; 13(1): 3640, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752615

ABSTRACT

Systematic SARS-CoV-2 testing is a valuable tool for infection control and surveillance. However, broad application of high sensitive RT-qPCR testing in children is often hampered due to unpleasant sample collection, limited RT-qPCR capacities and high costs. Here, we developed a high-throughput approach ('Lolli-Method') for SARS-CoV-2 detection in children, combining non-invasive sample collection with an RT-qPCR-pool testing strategy. SARS-CoV-2 infections were diagnosed with sensitivities of 100% and 93.9% when viral loads were >106 copies/ml and >103 copies/ml in corresponding Naso-/Oropharyngeal-swabs, respectively. For effective application of the Lolli-Method in schools and daycare facilities, SEIR-modeling indicated a preferred frequency of two tests per week. The developed test strategy was implemented in 3,700 schools and 698 daycare facilities in Germany, screening over 800,000 individuals twice per week. In a period of 3 months, 6,364 pool-RT-qPCRs tested positive (0.64%), ranging from 0.05% to 2.61% per week. Notably, infections correlated with local SARS-CoV-2 incidences and with a school social deprivation index. Moreover, in comparison with the alpha variant, statistical modeling revealed a 36.8% increase for multiple (≥2 children) infections per class following infections with the delta variant. We conclude that the Lolli-Method is a powerful tool for SARS-CoV-2 surveillance and can support infection control in schools and daycare facilities.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Child , Clinical Laboratory Techniques/methods , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
6.
Mol Metab ; 45: 101163, 2021 03.
Article in English | MEDLINE | ID: mdl-33453418

ABSTRACT

OBJECTIVE: To regulate food intake, our brain constantly integrates external cues, such as the incentive value of a potential food reward, with internal state signals, such as hunger feelings. Incentive motivation refers to the processes that translate an expected reward into the effort spent to obtain the reward; the magnitude and probability of a reward involved in prompting motivated behaviour are encoded by the dopaminergic (DA) midbrain and its mesoaccumbens DA projections. This type of reward circuity is particularly sensitive to the metabolic state signalled by peripheral mediators, such as insulin or glucagon-like peptide 1 (GLP-1). While in rodents the modulatory effect of metabolic state signals on motivated behaviour is well documented, evidence of state-dependent modulation and the role of incentive motivation underlying overeating in humans is lacking. METHODS: In a randomised, placebo-controlled, crossover design, 21 lean (body mass index [BMI] < 25 kg/m2) and 16 obese (BMI³ 30 kg/m2) volunteer participants received either liraglutide as a GLP-1 analogue or placebo on two separate testing days. Incentive motivation was measured using a behavioural task in which participants were required to exert physical effort using a handgrip to win different amounts of food and monetary rewards. Hunger levels were measured using visual analogue scales; insulin, glucose, and systemic insulin resistance as assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) were quantified at baseline. RESULTS: In this report, we demonstrate that incentive motivation increases with hunger in lean humans (F(1,42) = 5.31, p = 0.026, ß = 0.19) independently of incentive type (food and non-food reward). This effect of hunger is not evident in obese humans (F(1,62) = 1.93, p = 0.17, ß = -0.12). Motivational drive related to hunger is affected by peripheral insulin sensitivity (two-way interaction, F(1, 35) = 6.23, p = 0.017, ß = -0.281). In humans with higher insulin sensitivity, hunger increases motivation, while poorer insulin sensitivity dampens the motivational effect of hunger. The GLP-1 analogue application blunts the interaction effect of hunger on motivation depending on insulin sensitivity (three-way interaction, F(1, 127) = 5.11, p = 0.026); no difference in motivated behaviour could be found between humans with normal or impaired insulin sensitivity under GLP-1 administration. CONCLUSION: We report a differential effect of hunger on motivation depending on insulin sensitivity. We further revealed the modulatory role of GLP-1 in adaptive, motivated behaviour in humans and its interaction with peripheral insulin sensitivity and hunger. Our results suggest that GLP-1 might restore dysregulated processes of midbrain DA function and hence motivational behaviour in insulin-resistant humans.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Hunger/physiology , Insulin Resistance , Motivation , Adult , Body Mass Index , Brain/metabolism , Female , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide-1 Receptor , Hand Strength , Humans , Hyperphagia , Insulin/metabolism , Liraglutide , Male , Obesity , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...