Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 24(1): 261, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968726

ABSTRACT

BACKGROUND: Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS: We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS: Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.


Subject(s)
Autistic Disorder , Male , Animals , Mice , Female , Autistic Disorder/genetics , Autistic Disorder/metabolism , Neuroanatomy , Brain/metabolism , Phenotype , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Calcium-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism
2.
Brain ; 146(11): 4766-4783, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37437211

ABSTRACT

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Subject(s)
Signal Transduction , TOR Serine-Threonine Kinases , Humans , Animals , Mice , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , Brain/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Cognition , Microfilament Proteins/genetics
3.
Curr Protoc Mouse Biol ; 8(3): e48, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29944194

ABSTRACT

In this article, we present a standardized protocol for fast and robust neuroanatomical phenotyping of the adult mouse brain, which complements a previously published article (doi: 10.1002/cpmo.12) in Current Protocols in Mouse Biology. It is aimed at providing an experimental pipeline within an academic research setting from experimental work to data analysis. Our analysis focuses on one single parasagittal plane, covering the majority of brain regions involved in higher order cognitions such as the cortex, hippocampus, and cerebellum, for a total of 166 parameters of area, length, and cell-level measurements in contrast to 78 parameters in our previously published coronal screen. Benefits of using parasagittal analysis for large-scale neuroanatomic screens are discussed. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Brain/anatomy & histology , Histological Techniques/methods , Mice/anatomy & histology , Neuroanatomy/methods , Animals , Histological Techniques/standards , Neuroanatomy/standards
4.
Proc Natl Acad Sci U S A ; 114(44): E9308-E9317, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078390

ABSTRACT

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.


Subject(s)
Autophagy/physiology , Brain/growth & development , Brain/metabolism , Microfilament Proteins/metabolism , Microtubule-Associated Proteins/metabolism , WD40 Repeats/physiology , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Microtubules/physiology , Neurogenesis/physiology , Neurons/metabolism , Neurons/physiology , Phenotype , Stem Cells/metabolism , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...