Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Orthop ; 51: 130-136, 2024 May.
Article in English | MEDLINE | ID: mdl-38384727

ABSTRACT

Purpose: As capsule elongation is assumed to weaken the static stability of the shoulder joint, the purpose of this biomechanical study was to demonstrate that capsule elongation occurs immediately after a first-time shoulder dislocation and not just after recurrent dislocation events. We hypothesize an increment in joint clearance due to joint capsule elongation after a first-time dislocation. Methods: An experimental in-vitro study was conducted on 6 paired fresh frozen human shoulders (4 females; 2 males; 12 specimen) with a mean age of 80 (Range 67-89) years. The shoulder joint with the articular capsule was exposed and an inferior static tension force of 2.5 N was applied to the humerus prior to dislocation. Next, the humeral head was dislocated and was then immediately reduced back into the start position. The joint gap as well as joint capsule deformation was assessed using optical techniques. Results: The radiographic joint gap increased from 13.7 ± 6.9 mm (prior to dislocation) to 18.1 ± 6.5 mm (post dislocation) (p < .001). The increase in joint clearance was 4.4 mm. The joint capsule elongated from 5.9 ± 0.005 % (prior to dislocation) to 9.4 ± 0.007 % (post dislocation) (p < .001). The mean increase in joint capsule elongation was 3.5 %. Conclusions: Capsule elongation was observed immediately after a simulated first-time shoulder dislocation in an in-vitro model of elderly human cadavers. It might therefore not only be a phenomenon of recurrent dislocation events.

2.
J Shoulder Elbow Surg ; 33(4): e175-e184, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37652214

ABSTRACT

BACKGROUND: To reduce hardware-related complications in coracoid graft fixation to the anterior aspect of the glenoid, a metal-free Latarjet technique was recently introduced. The aim of this study was to compare the primary stability of a classic Latarjet procedure with 2 metal screws to a novel metal-free, all-suture cerclage method. It is hypothesized that fixation of the coracoid graft with 2 malleolar screws will provide higher primary stability compared with an all-suture cerclage technique. METHODS: This biomechanical in vitro study was conducted on 12 fresh-frozen cadaveric shoulders (6 matched pairs) with a mean donor age of 80 years (range, 67-89 years). Coracoid graft fixation was performed using a recently introduced all-suture cerclage technique (group A) or a classic Latarjet technique with two 4.5-mm malleolar screws (group B). The conjoint tendon was loaded with a static force of 10 N to simulate the sling effect. Graft loading with a probe head consisted of 6 ascending load levels (10-50 N, 10-100 N, 10-150 N, 10-200 N, 10-250 N, and 10-300 N) with 100 cycles each at 1 Hz. Relative motion of the bone graft to the glenoid was measured using an optic 3-dimensional system. RESULTS: While loading the conjoint tendon with 10 N, no difference in mean displacement of the bone-graft was found between both groups (P = .144). During cyclic loading, a significant difference in relative displacement for both groups was already detected in load level 1 (group A: 2398.8 µm vs. group B: 125.7 µm; P = .024), and this trend continued with the following load levels (P < .05). DISCUSSION AND CONCLUSION: The study demonstrated that the innovative metal-free, all-suture cerclage fixation technique results in higher micromotion than the classic coracoid graft fixation with 2 malleolar screws. According to the present biomechanical investigation, shoulders treated with a metal-free all-suture cerclage technique might need adapted rehabilitation protocols to protect the construct and allow for graft healing.


Subject(s)
Bursitis , Joint Instability , Shoulder Dislocation , Shoulder Joint , Humans , Aged , Aged, 80 and over , Shoulder Joint/surgery , Bone Transplantation , Scapula/surgery , Shoulder Dislocation/surgery , Sutures , Biomechanical Phenomena , Joint Instability/surgery
3.
J Mech Behav Biomed Mater ; 150: 106326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141361

ABSTRACT

Implant modularity within revision total hip arthroplasty (THA) offers multiple implant configurations and allows surgeons a high intraoperative flexibility to restore functionality to the patients joint, even in complex revision cases. However, a rare but devastating complication for patients, clinicians and manufacturers presenting a breakage of the taper junction between the distal stem and the proximal implant part. Aside from implant and patient specific risk factors, corrosion and fretting at the stem junctions have been associated with taper failure. Whether corrosive processes are a precursor of failure or rather an accompaniment of material fatigue is thereby still unclear. Therefore, this study aims to investigate the incidence of taper corrosion in a collection of 17 retrievals from a single type (MRP-Titan, Peter Brehm GmbH) and on the correlation of taper corrosion to implant and patient specific factors. None of the implants was revised for problems related to the taper junction, corrosion or the implant itself. The modular stem junction of all retrievals was visually rated with respect to corrosion, fretting and surface contamination. Additionally, the stability of taper junctions of retrievals where the proximal part with the neck was still assembled to the stem was determined by measuring the loosening moment of the securing screw and the push-out-force for taper dissociation. There was no difference between the mean push-out-force of the retrievals (14 kN ± 1.2 kN) and new reference samples (12.6 kN ± 0.5 kN). Approximately one third of the investigated retrievals showed considerable taper corrosion. The extent of corrosion increased with time in vivo and contamination of the neck piece, while it decreased with the loosening moment of the locking screw. The parameters femoral head offset, neck piece length, lateralized neck pieces, obesity of patients and septic/aseptic revision were not correlated to taper corrosion. Taper corrosion seems to occur regularly in modular taper junctions and is not necessarily connected to taper failure. A correct assembly of the junction and avoiding taper surface contamination during revision surgery is mandatory.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Hip Prosthesis/adverse effects , Corrosion , Prosthesis Design , Reoperation , Prosthesis Failure
4.
J Mech Behav Biomed Mater ; 144: 105997, 2023 08.
Article in English | MEDLINE | ID: mdl-37413893

ABSTRACT

BACKGROUND: In total knee arthroplasty, femoral components with coated or oxidized surfaces are commonly used as alternative to CoCrMo in metal sensitive patients. Data on the in vivo behaviour of different coating types is, however, rare. Aim of the study was the investigation of coating stability with respect to implant and patient specific parameters. METHODS: Coating thickness and coating thickness reduction, respectively, was measured at 37 retrieved femoral components with TiNbN, TiN, ZrN or oxidized zirconium (OxZr) surface by the crater grinding method. The results were correlated to surface type, manufacturer, time in vivo of the implant, patient body weight and patient activity. RESULTS: Mean coating thickness reduction in the overall retrieval collection was 0.6 µm ± 0.8 µm. There was no correlation between coating thickness reduction and coating type, time in vivo, patient body weight, and patient activity. If grouped according to manufacturers, implants of one manufacturer showed an increased coating thickness reduction. 10 of 37 retrievals exhibited coating abrasion with exposure of the underlying alloy. TiNbN coatings showed the highest incidence (9/17) of coating abrasion. No coating breakthrough was observed in the ZrN or OxZr surfaces. CONCLUSION: Our results indicate that TiNbN coatings should be optimized to improve their wear resistance in the long-term.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Humans , Titanium , Zirconium , Ceramics
5.
J Orofac Orthop ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36862188

ABSTRACT

PURPOSE: To investigate a novel in-office three-dimensionally (3D) printed polymer bracket regarding slot precision and torque transmission. METHODS: Based on a 0.022″ bracket system, stereolithography was used to manufacture brackets (N = 30) from a high-performance polymer that met Medical Device Regulation (MDR) IIa requirements. Conventional metal and ceramic brackets were used for comparison. Slot precision was determined using calibrated plug gages. Torque transmission was measured after artificial aging. Palatal and vestibular crown torques were measured from 0 to 20° using titanium-molybdenum (T) and stainless steel (S) wires (0.019â€³â€¯× 0.025″) in a biomechanical experimental setup. The Kruskal-Wallis test with post hoc test (Dunn-Bonferroni) was used for statistical analyses (significance level p < 0.05). RESULTS: The slot sizes of all three bracket groups were within the tolerance range according to DIN 13996 (ceramic [C]: 0.581 ± 0.003 mm; metal [M]: 0.6 ± 0.005 mm; polymer [P]: 0.581 ± 0.010 mm). The maximum torque values of all bracket-arch combinations were above the clinically relevant range of 5-20 Nmm (PS: 30 ± 8.6 Nmm; PT: 27.8 ± 14.2 Nmm; CS: 24 ± 5.6 Nmm; CT: 19.9 ± 3.8 Nmm; MS: 21.4 ± 6.7 Nmm; MT: 16.7 ± 4.6 Nmm). CONCLUSIONS: The novel, in-office manufactured polymer bracket showed comparable results to established bracket materials regarding slot precision and torque transmission. Given its high individualization possibilities as well as enabling an entire in-house supply chain, the novel polymer brackets bear high potential of future usage for orthodontic appliances.

6.
BMC Musculoskelet Disord ; 24(1): 51, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670400

ABSTRACT

BACKGROUND: The majority of knee endoprostheses are cemented. In an earlier study the effects of different cementing techniques on cement penetration were evaluated using a Sawbone model. In this study we used a human cadaver model to study the effect of different cementing techniques on relative motion between the implant and the femoral shaft component under dynamic loading. METHODS: Two different cementing techniques were tested in a group of 15 pairs of human fresh frozen legs. In one group a conventional cementation technique was used and, in another group, cementation was done using a pressurizing technique. Under dynamic loading that simulated real life conditions relative motion at the bone-implant interface were studied at 20 degrees and 50 degrees flexion. RESULTS: In both scenarios, the relative motion anterior was significantly increased by pressure application. Distally, it was the same with higher loads. No significant difference could be measured posteriorly at 20°. At 50° flexion, however, pressurization reduced the posterior relative motion significantly at each load level. CONCLUSION: The use of the pressurizer does not improve the overall fixation compared to an adequate manual cement application. The change depends on the loading, flexion angle and varies in its proportion in between the interface zones.


Subject(s)
Arthroplasty, Replacement, Knee , Humans , Arthroplasty, Replacement, Knee/methods , Femur/surgery , Knee Joint/surgery , Bone Cements , Prostheses and Implants
7.
J Mech Behav Biomed Mater ; 133: 105307, 2022 09.
Article in English | MEDLINE | ID: mdl-35688037

ABSTRACT

BACKGROUND: In total hip replacement, wear and corrosion arising from modular taper connections have increasingly become a serious clinical concern. Previous studies led to confounding results regarding the role of specific taper design features, likely due to the application of different analytical approaches. Accordingly, this study has two major objectives: first, to evaluate different analytical approaches to evaluate the fretting-corrosion behavior; and secondly to determine the effect of four specific design variables: the taper engagement situation, the stem taper length and surface topography in terms of roughness and contact ratio. METHODS: An in vitro fretting-corrosion test setup was used including an aggressive solution. Cyclic loading was applied, varying from 300 N to 2500 N at a frequency of 3 Hz. Taper dummies covering different implant designs were tested in seven different test groups. Different quantitative and qualitative analytical test methods such as electrochemical characterization, ion analysis, gravimetry and corrosion scoring were applied in order to quantify the material degradation. RESULTS: A stepwise linear regression analysis showed that the taper engagement situation is the predominant factor that predicts the metal ion release from the taper connection, followed by the contact ratio of the taper surface and subsequently the taper length. A distal taper engagement situation, as well as a high contact ratio and a short taper length are the relevant parameters that decrease the metal ion release. Hereby, metal ion analysis turned out to be the most precise and reliable method for determining corrosive driven material loss, followed by gravimetry. CONCLUSION: It was found that the taper engagement length is the major design parameter that influences the total ion release. It further turned out, that the selection of an appropriate analytical approach is essential for the evaluation of the corrosion behavior of taper connections in an experimental setting.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Corrosion , Humans , Metals , Prosthesis Design , Prosthesis Failure
8.
Acta Biomater ; 145: 427-435, 2022 06.
Article in English | MEDLINE | ID: mdl-35417798

ABSTRACT

Corrosion at the modular taper junctions in total hip arthroplasty is clinically relevant because wear particles and ions generated at this interface can lead to adverse local tissue reactions or even implant failure. In vitro tribo-corrosion tests are usually accomplished in saline solutions or calf serum (CS), but the addition of H2O2 and FeCl3 have been suggested to mimic inflammatory conditions in the joint. Inflammatory conditions may aggravate corrosive processes and, therefore, should lead in vitro to a more severe and realistic tribo-corrosive material attack. Corrosion testing at 12/14 tapers comprising a CoCrMo head taper and a Ti6Al4V trunnion was accomplished in five electrolytes (Ringer's solution (RS), RS with 30 mM H2O2 and/or 0.7 mM FeCl3 and CS) under dynamical loading for five million cycles. Resulting material loss was determined gravimetrically and by ion analysis. The tribo-corrosive material degradation was investigated by light and electron microscopy. FeCl3 enhanced the material loss from taper connections while H2O2 did not lead to a significant alteration of total material loss. In comparison to pure RS, corrosion testing in CS decreased material loss at the head taper while it increased material loss at the trunnion. The combination of FeCl3 and H2O2 led to an enhanced occurrence of micro cracks at the trunnion surface. Adding FeCl3 and optionally also H2O2 aggravates material loss in in vitro corrosion testing of taper junctions and leads to harsher and probably more realistic testing conditions. STATEMENT OF SIGNIFICANCE: Tribo-corrosive processes at taper connections in hip implants are complex and can lead to major clinical implications. Joint inflammation is assumed to aggravate taper corrosion in vivo, why FeCl3 and H2O2 have been proposed as additives to electrolytes to simulate inflammatory conditions in vitro. Often used fretting test setups, however, do not involve real taper geometries. Besides, testing is often accomplished in saline solutions or calf serum, which do not induce a clinically significant amount of corrosive material degradation. This study presents an approach to increase tribo-corrosive processes at realistic taper connections by adding FeCl3 and/or H2O2. Unlike H2O2, FeCl3 increased material loss from taper connections. The combination of both additives enhanced micro crack formation at the trunnion surfaces.


Subject(s)
Arthroplasty, Replacement, Hip , Caustics , Hip Prosthesis , Arthroplasty, Replacement, Hip/adverse effects , Corrosion , Humans , Hydrogen Peroxide , Prosthesis Design , Prosthesis Failure
9.
Bone Joint Res ; 11(4): 229-238, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35400170

ABSTRACT

AIMS: One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. METHODS: A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD). RESULTS: The BMD showed no statistically significant difference between both groups. Group A showed for all load levels significantly higher maximum relative motion compared to group S for 20° and 50° flexion. Group S improved the maximum failure load significantly compared to group A without additional cement pockets. Group S showed a significantly increased cement adhesion compared to group A. The cement penetration and cement mantle defect analysis showed no significant differences between both groups. CONCLUSION: From a biomechanical point of view, the additional cement pockets of the component have improved the fixation performance of the implant. Cite this article: Bone Joint Res 2022;11(4):229-238.

10.
Materials (Basel) ; 14(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068363

ABSTRACT

Recent studies have illuminated the rheological behavior of synovial fluid and the role of protein and hyaluronan (HA). However, with respect to artificial joint replacement in standardized wear simulations, bovine serum is used as fluid test medium. Little is known about the rheological characteristics of bovine serum, which are needed for precise tribological investigations. The steady shear viscosity η of bovine calf serum is determined for protein concentrations used in standardized wear simulations depending on shear rate γ˙ and temperature T. Additionally, the density of the serum is determined for both protein concentrations. The results show shear thinning behavior of bovine calf serum with a nearly Newtonian behavior in the range of high shear rates. Within the range of high shear rates, mean viscosities of η = 0.82-0.88 mPa·s were found for protein concentrations of 20 g/L and mean viscosities of η = 0.88-0.94 mPa·s for 30 g/L, decreasing with temperature. Densities of 1.004-1.005 g/cm3 and 1.007-1.008 g/cm3 were found for 20 and 30 g/L protein concentrations, respectively.

11.
Orthopade ; 50(4): 259-269, 2021 Apr.
Article in German | MEDLINE | ID: mdl-33630110

ABSTRACT

When it comes to total hip replacements, choosing the suitable material combination is of clinical relevance. The present review article examines the technical differences in wear and corrosion of the relevant material combinations of ceramics, metals, ceramized metals and various types of polyethylene. The material characteristics, which were often tested under standardized conditions in the laboratory, are compared with clinical results on the basis of evidence-graded clinical studies and on the basis of register studies. This article thus represents an up-to-date snapshot of the expectations and actual clinical outcomes of the present choice of material combinations. It shows that some tendencies from the field of materials research, e.g. with regard to cross-linked polyethylene, coincide with observations from practical clinical experience, while for other materials, a proven technical superiority has not yet been confirmed as an evident advantage in clinical practice.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Polyethylene , Prosthesis Design , Prosthesis Failure
12.
J Mech Behav Biomed Mater ; 116: 104258, 2021 04.
Article in English | MEDLINE | ID: mdl-33497961

ABSTRACT

BACKGROUND: Although taper junctions are beneficial in the reconstruction of hip joints, some clinical concerns like the formation of adverse local tissue reactions have recently emerged. These reactions are associated with wear and corrosion products from the interface of insufficient taper connections regarding strength. Commonly used tapers vary in their geometric and topographical design parameter. Therefore, this study aims to evaluate interactions between design and surgical related parameters to the taper connection strength. METHODS: In this study, the effect of the taper contact situation, surface roughness and head material in combination with assembly force on the taper connection strength were assessed using torque-off tests. Furthermore, the type of use in terms of single-use or re-use of the stem taper was investigated. RESULTS: The study showed that the impaction force is the predominant factor that determines the taper strength followed by the type of use and the head material. The contact situation seems to slightly influence the determined torque-off moment, whereas the surface topography of the stem taper obviously plays a minor role for the taper connection strength. CONCLUSION: Clinical users should be aware that an increased assembly force will strengthen the stability of the taper junction, whereas care should be taken when reusing hip stems with metal heads as this may decrease their connection strength.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Corrosion , Hip Joint , Humans , Prosthesis Design , Prosthesis Failure
13.
J Mech Behav Biomed Mater ; 115: 104278, 2021 03.
Article in English | MEDLINE | ID: mdl-33340776

ABSTRACT

Despite the excellent clinical performance of joint replacements, wear-induced aseptic loosening is a main cause of premature implant failure. Tribological testing is usually carried out using bovine serum as an artificial synovial fluid. In order to gain new insights into the suitability to simulate human synovial fluid and provide recommendations for the conditions of tribological testing, accurate rheological measurements on the influence of temperature, shear rate and pressure on density and viscosity were performed. Thus, a temperature dependence of density and viscosity could be verified, whereas both values decreased with higher temperatures. The temperature dependency of viscosity could be approximated by an Arrhenius model. Moreover, shear-thinning characteristics could be demonstrated and fitted to a Cross model, which agreed well with investigations on human synovial fluid reported in literature. Furthermore, an anomaly of pressure dependence of viscosity was found and correlated with the behavior of water as a main constituent. At room temperature, the viscosity initially decreased to a minimum and then increased again as a function of pressure. This was no longer distinct at human body temperatures. Consequently, the present study confirms the suitability of bovine serum as a substitute synovial fluid and emphasizes the importance of realistic testing conditions in order to ensure transferability and comparability.


Subject(s)
Hot Temperature , Synovial Fluid , Animals , Cattle , Humans , Rheology , Temperature , Viscosity
14.
Materials (Basel) ; 13(17)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887457

ABSTRACT

Two-stage revision is considered the gold standard treatment for chronic periprosthetic joint infection (PJI). During the interim period, between explantation of the infected hip endoprosthesis and revision arthroplasty, individually formed articulating hip spacers made of polymethylmethacrylate (PMMA) bone cement can be used to provide better soft tissue preservation, local antibiotic release, and improved postoperative mobilization. If effective prevention from luxation is achieved, hip function and hence overall patient satisfaction is improved. Zirconium oxide particles inside conventional PMMA bone cement, however, are known to enhance third-body wear, which may cause alterations of the metal head in the articulating spacer and hence become a serious risk for the patient. Therefore, the aim of our study was to analyze whether the articular surface of cobalt-chrome (CoCr) femoral heads is significantly altered in the setting of a metal-on-cement articulation during the interim period of two-stage revision for PJI. We analyzed a consecutive series of 23 spacer cases and compared them with femoral heads from two series of conventional hip arthroplasty revisions with metal-on-polyethylene articulations and different time intervals in situ. To investigate metallic wear, the femoral heads were thoroughly examined, and their surface roughness was measured and analyzed. We found no significant differences between the two conventional hip arthroplasty groups, despite their very different times in situ. Furthermore, the individually different times in situ within the spacer group had no significant impact on surface roughness, either. Compared with the spacer group, the surface roughness of the metal femoral heads from both conventional hip arthroplasty groups were even higher. Within the spacer group, roughness parameters did not show significant differences regarding the five predefined locations on the metal head. We conclude that metal-on-cement articulations do not cause enhanced surface alterations of the metal femoral head and hence do not limit the application in articulating hip spacers in the setting of two-stage revision for PJI.

15.
Materials (Basel) ; 13(9)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344822

ABSTRACT

Corrosion of taper connections in total hip arthroplasty remains of concern, as particles and ions generated by corrosive processes can cause clinical problems such as periprosthetic osteolysis or adverse reaction to metallic debris. Mechanical surface treatments that introduce compressive residual stresses (RSs) in metallic materials can lead to a better performance in terms of fretting and fatigue and may lower the susceptibility to corrosion. The study investigates the impact of mechanical surface treatments on the corrosion behavior of metallic biomaterials. Compressive RSs were introduced by deep rolling and microblasting in Ti6Al4V and CoCrMo samples. Polished samples served as reference. Corrosion behavior was characterized by repeated anodic polarization. Residual stresses of up to about -900 MPa were introduced by deep rolling with a reach in depth of approximately 500 µm. Microblasting led to compressive RSs up to approximately -800 and -600 MPa for Ti6Al4V and CoCrMo, respectively, in the immediate vicinity of the surface. For Ti6Al4V, microblasting resulted in decreased corrosion resistance with lower breakdown potentials and/or increased passive current densities in comparison to the polished and deep-rolled samples. The corrosion behavior of CoCrMo on the other hand was not affected by the mechanical surface treatments.

16.
Materials (Basel) ; 13(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326506

ABSTRACT

As shown in previous studies, the modification of conventional polyethylene (CPE) to cross-linked polyethylene (XLPE) and the contribution of antioxidants result in a reduction in total wear. The aim of this study was to evaluate XLPE inserts with vitamin E and CPE regarding their resistance to the backside wear mechanism. A cementless hip cup system (Plasmafit® Plus 7, Aesculap) was dynamically loaded using CPE and XLPE inserts. The backside wear was isolated, generated and collected using the two-chamber principle. The chambers were filled with ultrapure water. After 2 × 106 cycles, the fluids were examined for wear particles according to a particle analysis. Using XLPE inserts, the backside wear was significantly reduced by 35%. While XLPE backside wear particles are significantly larger than CPE particles, they do not differ in their morphology. This study confirms the greater resistance to backside wear of XLPE compared to CPE. It can be assumed that the improved fatigue resistance of the vitamin E-stabilized XLPE inserts demonstrates XLPE's effectiveness against micro-motion and the resulting changing tensions in interface areas like surface breakdown, pitting and the release of very small particles.

17.
Materials (Basel) ; 13(7)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224971

ABSTRACT

Frequently occurring damage, as well as elevated blood metal ion levels, are reported in relation to a tumor and revision system for total knee arthroplasty (TKA), which applies a rotating hinge coupling with a metal-on-metal (MoM) articulation. As the patient collective for this specific system is small, there is no data on wear generated from the couplings. In this study, wear volume and influencing parameters were investigated at 44 retrieved TKAs with MoM couplings. A scoring system rating frequently occurring abrasive wear between 0 (no wear) and 3 (distinct wear) was established. The wear score was correlated to time in vivo, bone resection length, patient weight and polyethylene inlay damage. Volumetric wear was estimated applying coordinate measurements. An elevated wear score of two or higher was found in 43% of cases. The mean wear rate accounted to 7.8 mm3/year. The main influencing coefficient for the extent of wear is time in vivo. We found a tendency for higher wear scores with higher inlay degradation scores. Patient weight and bone resection length did not impact coupling wear. Assessment of wear damage by a semi-quantitative scoring system has proven to be a reliable option for non-destructive coupling evaluation. The generated wear volume is high.

18.
Materials (Basel) ; 13(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230788

ABSTRACT

Model-based Roentgen stereophotogrammetric analysis (RSA) using elementary geometrical shape (EGS) models allows migration measurement of implants without the necessity of additional attached implant markers. The aims of this study were: (i) to assess the possibility of measuring potential head-taper movement in THA in vivo using model-based RSA and (ii) to prove the validity of measured head-taper migration data in vitro and in vivo. From a previous RSA study with a 10 years follow-up, retrospectively for n = 45 patients head-taper migration was calculated as the relative migration between femoral ball head and taper of the femoral stem using model-based RSA. A head-taper migration of 0.026 mm/year can be detected with available RSA technology. In vitro validation showed a total migration of 268 ± 11 µm along the taper axis in a similar range to what has been reported using the RSA method. In vivo, a proof for interchangeable applicability of model-based RSA (EGS) and standard marker-based RSA methods was indicated by a significant deviation within the migration result after 12-month follow-up for all translation measurements, which was significantly correlated to the measured head-taper migration (r from 0.40 to 0.67; p < 0.05). The results identified that model-based RSA (EGS) could be used to detect head-taper migration in vivo and the measured movement could be validated in vitro and in vivo as well. Those findings supported the possibility of applying RSA for helping evaluate the head-taper corrosion related failure (trunnionosis).

19.
Biomed Res Int ; 2019: 3649838, 2019.
Article in English | MEDLINE | ID: mdl-31781613

ABSTRACT

Metal wear debris and released ions (CoCrMo), which are widely generated in metal-on-metal bearings of hip implants, are also found in patients with metal-on-polyethylene bearings due to the mechanically assisted crevice corrosion of modular taper junctions, including head-neck and neck-stem taper interfaces. The resulting adverse reactions to metal debris and metal ions frequently lead to early arthroplasty revision surgery. National guidelines have since been published where the blood metal ion concentration of patients must consistently be monitored after joint replacement to prevent serious complications from developing after surgery. However, to date, the effect of metal particles and metal ions on local biological reactions is complex and still not understood in detail; the present study sought to elucidate the complex mechanism of metal wear-associated inflammation reactions. The knee joints in 4 groups each consisting of 10 female BALB/c mice received injections with cobalt chrome ions, cobalt chrome particles, and ultra-high-molecular-weight polyethylene (UHMWPE) particles or PBS (control). Seven days after injection, the synovial microcirculation and knee joint diameter were assessed via intravital fluorescence microscopy followed by histological evaluation of the synovial layer. Enlarged knee diameter, enhanced leukocyte to endothelial cell interactions, and an increase in functional capillary density within cobalt chrome particle-treated animals were significantly greater than those in the other treatment groups. Subsequently, pseudotumor-like tissue formations were observed only in the synovial tissue layer of the cobalt chrome particle-treated animals. Therefore, these findings strongly suggest that the cobalt chrome particles and not metal ions are the cause for in vivo postsurgery implantation inflammation.


Subject(s)
Arthroplasty, Replacement, Hip/adverse effects , Chromium Alloys/adverse effects , Hip Prosthesis/adverse effects , Metals/adverse effects , Animals , Chromium Alloys/pharmacology , Corrosion , Disease Models, Animal , Humans , Inflammation/blood , Inflammation/chemically induced , Knee Joint/surgery , Metals/therapeutic use , Mice , Polyethylene/pharmacology , Prosthesis Failure/adverse effects , Reoperation , Synovial Fluid/drug effects
20.
J Bone Joint Surg Am ; 101(10): 868-878, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31094978

ABSTRACT

BACKGROUND: The risk of femoral stem fracture after total hip replacement is low and can often be associated with a specific implant system or other factors that may reduce the fatigue strength. Additionally, damage to a metal component during revision surgery by an electrocautery device may further affect the fatigue behavior. METHODS: Two clinical cases of stem failure after revision of fractured ceramic components are presented; the retrieved components were analyzed for the cause of failure. In vitro cyclic load-to-failure testing of titanium alloy femoral stems after electrocautery application at 2 different locations (at the base and about midway on the femoral neck) was performed using a stepwise increase in load until implant fracture occurred. In addition, a detailed characterization of the local material structure around the electrocautery marks was performed. RESULTS: Superficial discoloration and melting marks were found on the retrieved components, including at the location of crack initiation in the anterolateral region, which may have reduced the fatigue strength of the material. In addition, elemental analysis indicated material transfer from the electrocautery tip. Damage to the surface by the electrocautery device significantly reduced the in vitro load to failure by up to 47% compared with that of undamaged femoral neck specimens. Material analysis revealed a relevant modification in microstructure, with an extension of approximately 2.7 mm and a depth of 550 µm, which could be divided in 3 structural zones. CONCLUSIONS: Intraoperative electrocautery device contact with the implant during surgical revision of a total hip replacement cannot always be avoided. However, on the basis of our findings, the risk of implant failure is increased due to a change in microstructure and a potential reduction of the implant's fatigue strength. Surgeons and manufacturers of electrocautery devices should be aware of this concern. CLINICAL RELEVANCE: During revision surgery, contact between an electrocautery device and the femoral component should be avoided to reduce the chance of subsequent femoral neck fracture.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Electrocoagulation/adverse effects , Hip Prosthesis , Prosthesis Failure , Aged , Arthroplasty, Replacement, Hip/methods , Electrocoagulation/instrumentation , Equipment Failure Analysis , Humans , Male , Middle Aged , Prosthesis Design , Reoperation
SELECTION OF CITATIONS
SEARCH DETAIL
...