Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Eur J Trauma Emerg Surg ; 49(1): 327-333, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36098797

ABSTRACT

BACKGROUND: In orthopedic and trauma surgery, pulsatile lavage systems are used to clean soft tissue. This may be necessary in septic surgeries or in case of contaminated wounds after trauma. Positive features such as reduction of bacterial contamination and removal of foreign particles are counterbalanced by negative aspects such as bacterial seeding in deeper tissue layers, damage to various tissues and even cases of air embolism. PURPOSE: The aim of this prospective experimental in vitro study was to compare impact pressure and flow rate in three different pulsatile lavage systems and to determine, whether these parameters alter their ability to reach deeper soft tissue layers. METHODS: To test the penetration of soft tissue, the muscle tissue was flushed with contrast medium instead of saline fluid and afterwards scanned by computed tomography. RESULTS: Impact pressure and flow rate showed significant differences between the different systems. There were no significant differences between the three devices in terms of total penetration volume, but there were significant differences in penetration depth. CONCLUSION: In this study, we found that higher impact pressure leads to deeper penetration and therefore bacteria are likely to be transferred to deeper tissue layers.


Subject(s)
Therapeutic Irrigation , Humans , Therapeutic Irrigation/methods , Prospective Studies
2.
Biomedicines ; 10(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36289775

ABSTRACT

The treatment of non-unions is often complicated by segmental bone defects and bacterial colonization. Because of the limited availability of autologous bone grafts, tissue engineering focuses on antibiotic-loaded bone graft substitutes. HACaS+G is a resorbable calcium sulphate-hydroxyapatite loaded with gentamicin. The osteoinductive, osteoconductive, and anti-infective effect of HACaS+G has already been demonstrated in clinical studies on patients with chronic osteomyelitis. However, especially for the treatment of infected non-unions with segmental bone defects by HACaS+G, reliable clinical testing is difficult and sufficient experimental data are lacking. We used an already established sequential animal model in infected and non-infected rat femora to investigate the osteoinductive, osteoconductive, and anti-infective efficacy of HACaS+G for the treatment of infected non-unions. In biomechanical testing, bone consolidation could not be observed under infected and non-infected conditions. Only a prophylactic effect against infections, but no eradication, could be verified in the microbiological analysis. Using µ-CT scans and histology, osteoinduction was detected in both the infected and non-infected bone, whereas osteoconduction occurred only in the non-infected setting. Our data showed that HACaS+G is osteoinductive, but does not have added benefits in infected non-unions in terms of osteoconduction and mechanical bone stability, especially in those with segmental bone defects.

3.
Clin Orthop Relat Res ; 480(9): 1790-1800, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35583549

ABSTRACT

BACKGROUND: Kinematic alignment is an alternative approach to mechanical alignment. Kinematic alignment can restore the joint line to its prearthritic condition, and its advocates have suggested it may be associated with other benefits. But this alignment approach often results in tibial components that are placed in varus and femoral components that are placed in valgus alignment, which may result in an increased risk of component loosening because of wear. Like malaligned implant components, kinematically aligned knee implants could increase wear in vivo, but we lack comparative data about wear behavior between these approaches. QUESTIONS/PURPOSES: (1) Do the different alignment approaches (kinematic, mechanical, and purposefully malaligned components) result in different wear rates in a wear simulator? (2) Do the different alignment approaches lead to different worn areas on the polyethylene inserts in a wear simulator? (3) Do the different alignment approaches result in different joint kinematics in a wear simulator? METHODS: Mechanical alignment was simulated in a force-controlled manner with a virtual ligament structure according to the International Organization for Standardization (ISO 14243-1) using a knee wear simulator. To simulate kinematic alignment, flexion-extension motion, internal-external torque, and the joint line were tilted by 4°, using a novel mechanical setup, without changing the force axis. The setup includes bearings with inclinations of 4° so that the joint axis of 4° is determined. To verify the angle of 4°, a digital spirit level was used. To simulate malalignment, we tilted the implant and, therefore, the joint axis by 4° using a wedge with an angle of 4° without tilting the torque axes of the simulator. This leads to a purposefully malaligned tibial varus and femoral valgus of 4°. For each condition, three cruciate-retaining knee implants were tested for 3.0 x 10 6 cycles, and one additional implant was used as soak control. Gravimetric wear analyses were performed every 0.5 x 10 6 cycles to determine the linear wear rate of each group by linear regression. The wear area was measured after 3.0 x 10 6 cycles by outlining the worn areas on the polyethylene inserts, then photographing the inserts and determining the worn areas using imaging software. The joint kinematics (AP translation and internal-external rotation) were recorded by the knee simulator software and analyzed during each of the six simulation intervals. RESULTS: Comparing the wear rates of the different groups, no difference could be found between the mechanical alignment and the kinematic alignment (3.8 ± 0.5 mg/million cycles versus 4.1 ± 0.2 mg/million cycles; p > 0.99). However, there was a lower wear rate in the malaligned group (2.7 ± 0.2 mg/million cycles) than in the other two groups (p < 0.01). When comparing the total wear areas of the polyethylene inserts among the three different alignment groups, the lowest worn area could be found for the malaligned group (716 ± 19 mm 2 ; p ≤ 0.003), but there was no difference between kinematic alignment and mechanical alignment (823 ± 19 mm 2 versus 825 ± 26 mm 2 ; p > 0.99). Comparing the AP translation, no difference was found between the mechanical alignment, the kinematic alignment, and the malalignment group (6.6 ± 0.1 mm versus 6.9 ± 0.2 mm versus 6.8 ± 0.3 mm; p = 0.06). In addition, the internal-external rotation between mechanical alignment, kinematic alignment, and malalignment also revealed no difference (9.9° ± 0.4° versus 10.2° ± 0.1° versus 10.1° ± 0.6°; p = 0.44). CONCLUSION: In the current wear simulation study, the wear rates of mechanical alignment and kinematic alignment of 4° were in a comparable range. CLINICAL RELEVANCE: The results suggest that kinematic alignment with up to 4° of component inclination may give the surgeon confidence that the reconstruction will have good wear-related performance when using a modern cruciate-retaining implant. The malaligned group had the lowest wear rate, which may be a function of the smaller worn area on the inserts compared with the other two alignment groups. This smaller articulation area between the femoral condyles and polyethylene insert could increase the risk of delamination of malaligned components over longer test durations and during high-load activities. For that reason, and because malalignment can cause nonwear-related revisions, malalignment should be avoided. Further in vitro and clinical studies must prove whether the wear simulation of different alignments can predict the wear behavior in vivo.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Arthroplasty, Replacement, Knee/adverse effects , Biomechanical Phenomena , Humans , Knee Joint/surgery , Knee Prosthesis/adverse effects , Polyethylene
4.
Clin Orthop Relat Res ; 480(8): 1585-1600, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35383614

ABSTRACT

BACKGROUND: Wear and corrosion at modular neck tapers in THA can lead to major clinical implications such as periprosthetic osteolysis, adverse local tissue reactions, or implant failure. The material degradation processes at the taper interface are complex and involve fretting corrosion, third-body abrasion, as well as electrochemical and crevice corrosion. One phenomenon in this context is imprinting of the head taper, where the initially smooth surface develops a topography that reflects the rougher neck taper profile. The formation mechanism of this specific phenomenon, and its relation to other observed damage features, is unclear. An analysis of retrieved implants may offer some insights into this process. QUESTIONS/PURPOSES: (1) Is imprinting related to time in situ of the implants and to the taper damage modes of corrosion and fretting? (2) Are implant design parameters like neck taper profile, stem material, or head seating associated with the formation of imprinting? (3) Is imprinting created by an impression of the neck taper profile or can a different mechanistic explanation for imprinting be derived? METHODS: Thirty-one THAs with cobalt-chromium-molybdenum-alloy (CoCrMo) heads retrieved between 2013 and 2019 at revision surgery from an institutional registry were investigated. Inclusion criteria were: 12/14 tapers, a head size of 36 mm or smaller, time in situ more than 1 year, and intact nonmodular stems without sleeve adaptors. After grouping the residual THAs according to stem type, stem material, and manufacturer, all groups of three or more were included. Of the resulting subset of 31 retrievals, nine THAs exhibited a still assembled head-neck taper connection. The median (range) time in situ was 5 years (1 to 23). Two stem materials (21 titanium-alloy and 10 stainless steel), three kinds of bearing couples (11 metal-on-metal, 13 metal-on-polyethylene, and seven dual-mobility heads), and two different neck taper profiles (six wavy profile and 25 fluted profile) were present in the collection. Four THAs exhibited signs of eccentric head seating. The 31 investigated THAs represented 21% of the retrieved THAs with a CoCrMo alloy head during the specified period.At the head tapers, the damage modes of corrosion, fretting, and imprinting were semiquantitatively rated on a scale between 0 (no corrosion/fretting/imprinting) and 3 (severe corrosion/fretting/imprinting). Corrosion and fretting were assessed applying the Goldberg score, with the modification that the scale started at 0 and not at 1. Imprinting was assessed with a custom scoring system. Rating was done individually at the proximal and distal head taper half and summed to one total damage score for each retrieval and damage mode. Correlations between the damage modes and time in situ and between the damage modes among each other, were assessed using the Spearman rank order correlation coefficient (ρ). Associations between imprinting and implant design parameters were investigated by comparing the total imprinting score distributions with the Mann-Whitney U-test. Metallographically prepared cross-sections of assembled head-neck taper connections were examined by optical microscopy and disassembled head and neck taper surfaces were assessed by scanning electron microscopy (SEM). RESULTS: The imprinting damage score increased with time in-situ (ρ = 0.72; p < 0.001) and the corrosion damage score (ρ = 0.63; p < 0.001) but not with the fretting damage score (ρ = 0.35; p = 0.05). There was no difference in total imprinting score comparing neck taper profiles or stem materials, with the numbers available. Eccentric head seating had elevated total imprinting score (median 6 [interquartile range 0]) compared with centric seating (median 1 [2]; p = 0.001). Light optical investigations showed that imprinting can be present on the head taper surfaces even if the depth of abraded material exceeds the neck taper profile height. SEM investigations showed bands of pitting corrosion in the imprinted grooves. CONCLUSION: The microscopic investigations suggest that imprinting is not an independent phenomenon but a process that accompanies the continuous material degradation of the head taper surface because of circular damage on the passive layer induced by grooved neck tapers. CLINICAL RELEVANCE: Material loss from head-neck taper connections involving CoCrMo alloy heads is a source of metal ions and could potentially be reduced if hip stems with smooth neck tapers were used. Surgeons should pay attention to the exact centric seating of the femoral head onto the stem taper during joining of the parts.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Arthroplasty, Replacement, Hip/adverse effects , Chromium Alloys , Hip Prosthesis/adverse effects , Humans , Prosthesis Design , Prosthesis Failure
5.
J Mech Behav Biomed Mater ; 128: 105119, 2022 04.
Article in English | MEDLINE | ID: mdl-35149374

ABSTRACT

In the present work, the influence of the trunnion surface topography and the near-surface residual stresses on the joining process of a taper connection is examined using a replicate of the realistic taper connection as it occurs in conventional hip joint implants. The focus of the work is on the surface of the taper trunnion made of Ti6Al4V ELI and its effect on the connection stability with a CoCrMo counterpart. In this regard, the interrelation between surface topography, residual stresses, the joining behavior and the corrosion behavior under dynamic loading have been systematically investigated. For this purpose, taper trunnions produced by means of three different machining processes were considered, i.e. fine machining, rough machining and a novel furrowing process. These mechanical surface treatments result in different surface topographies and near-surface work hardening and residual stress states. The results show that the primary taper stability is hardly altered by the different types of trunnion surfaces. For all three surface states, the joining/dismantling procedure did not change the residual stress state at the surface. After corrosion testing under dynamic loading, the fine machined taper surface exhibits the highest stability. Moreover, fine machined tapers consolidated during the dynamic corrosion experiment as the ratio between joining and dismantling force increased from 0.49 ± 0.04 to 0.83 ± 0.08. For the furrowed and rough machined taper surfaces, the connection stability showed a tendency towards increase and decrease, respectively, in the course of dynamic corrosion testing. The results indicate that for choosing an optimal taper trunnion surface, the effects of corrosion must be taken into account.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Corrosion , Humans , Prosthesis Design , Prosthesis Failure
6.
J Mech Behav Biomed Mater ; 127: 105080, 2022 03.
Article in English | MEDLINE | ID: mdl-35074735

ABSTRACT

INTRODUCTION: In shoulder arthroplasty, ultra-high-molecular-weight polyethylene is used as standard material for glenoid components. The emergence of wear particles and their influence on the aseptic loosening of joint replacements are well known. The aim of the present study is to investigate the wear behaviour of the implant combinations as well as the size and morphology of the released wear particles from novel anatomic shoulder prosthesis. Here, the main interest lies on the influence of material inversion and different conformities on wear behaviour. METHODS: Wear simulation was performed using a force-controlled joint simulator. The Modular-Shoulder-System from Permedica S.p.A. Orthopaedics was studied. Polyethylene wear was determined gravimetrically and was characterised by particle analysis. An abduction-adduction motion of 0°-90° lifting a load of 2 kg superimposed by an ante-/retroversion was chosen as the activity. In addition, an extreme test was performed to simulate subluxation of the joint. RESULTS: The results showed a wear reduction of approximately 70% and a significant decrease in the total number of wear particles due to the material inversion on the bearing materials. No reduction of wear could be determined by varying the conformity of the bearing partners. In the simulated subluxation, the material inversion shows an increase in wear. CONCLUSION: Compared to similarly investigated systems, the Modular-Shoulder-System shows a reduction in wear. This reduction shows that material inversion may lead to a wear reduction. However, if subluxation of the humeral head occurs more frequently, increased material wear can be expected with the Modular-Shoulder-System. An influence of the conformity on the wear behaviour could not be determined.


Subject(s)
Arthroplasty, Replacement , Joint Prosthesis , Shoulder Prosthesis , Arthroplasty, Replacement/methods , Humans , Humeral Head , Polyethylene , Prosthesis Design , Prosthesis Failure , Scapula
7.
EFORT Open Rev ; 6(11): 982-1005, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34909220

ABSTRACT

Off-label use is frequently practiced in primary and revision arthroplasty, as there may be indications for the application of implants for purposes outside the one the manufacturers intended.Under certain circumstances, patients may benefit from selective application of mix & match. This can refer to primary hip arthroplasty (if evidence suggests that the combination of devices from different manufacturers has superior results) and revision hip or knee arthroplasty (when the exchange of one component only is necessary and the invasiveness of surgery can be reduced).Within the EFORT 'Implant and Patient Safety Initiative', evidence- and consensus-based recommendations have been developed for the safe application of off-label use and mix & match in primary as well as revision hip and knee arthroplasty.Prior to the application of a medical device for hip or knee arthroplasty off-label and within a mix & match situation, surgeons should balance the risks and benefits to the patient, obtain informed consent, and document the decision process appropriately.Nevertheless, it is crucial for surgeons to only combine implants that are compatible. Mismatch of components, where their sizes or connections do not fit, may have catastrophic effects and is a surgical mistake.Surgeons must be fully aware of the features of the components that they use in off-label indications or during mix & match applications, must be appropriately trained and must audit their results.Considering the frequent practice of off-label and mix & match as well as the potential medico-legal issues, further research is necessary to obtain more data about the appropriate indications and outcomes for those procedures. Cite this article: EFORT Open Rev 2021;6:982-1005. DOI: 10.1302/2058-5241.6.210080.

8.
Knee ; 33: 185-192, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34638017

ABSTRACT

BACKGROUND: Aseptic loosening remains one of the most common causes of revision of the tibial component for total knee arthroplasty. A stable bond between implant and cement is essential for appropriate long-term results. The aim of our in vitro study was to investigate the maximum failure load of tibial ATTUNE prosthesis design alternatives compared with a previous design. In addition, cement-in-cement revision was considered as a potential strategy after tibial component debonding. METHODS: The experimental investigations of the maximum failure load of the implant-cement interface were performed under optimal conditions, without potential contamination. We compared the designs of the tibial components of the ATTUNE, ATTUNE S+ and P.F.C. Sigma. In addition, we investigated the cement-in-cement revision for the ATTUNE knee system replacing it with an ATTUNE S+. RESULTS: The maximum failure load showed no significant difference between P.F.C. Sigma and ATTUNE groups (P = 0.087), but there was a significant difference between the P.F.C. Sigma and the ATTUNE S+ groups (P < 0.001). The analysis also showed a significant difference (P < 0.001) between the ATTUNE and the ATTUNE S+ groups for the maximum failure load. The ATTUNE S+ cement-in-cement revision group showed a significant higher failure load (P < 0.001) compared with the P.F.C. Sigma and ATTUNE groups. No significant differences (P = 1.000) were found between the ATTUNE S+ cement-in-cement and ATTUNE S+ group. CONCLUSION: Based on these results, we found no design-specific evidence of increased debonding risk with the ATTUNE and ATTUNE S+ components compared with the P.F.C Sigma. Furthermore, the cement-in-cement revision seems to be an alternative for the revision surgery.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Bone Cements , Humans , Knee Joint/surgery , Prosthesis Design , Prosthesis Failure , Reoperation , Tibia/surgery
9.
J Clin Med ; 10(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34501450

ABSTRACT

The goal of this study is to evaluate the primary stability of a cementless augment-and-modular-cage system with and without the addition of cranial straps in a standardized in vitro setting. As the surrogate parameter for the evaluation of primary stability, the measurement of relative motion between the implant components themselves and the bone will be used. Acetabular revision components with a trabecular titanium augment in combination with a large fourth-generation composite left hemipelvis were assembled. These constructs were divided into two groups with (S) and without cranial straps (nS). A total of 1000 cycles was applied at each of three load levels. Relative movements (RM) between the components were measured. Load levels display a significant effect on the amount of RM at all interfaces except between shell/augment. The group assignment appears to have an effect on RM due to significantly differing means at all interfaces. Between bone/shell RM increased as load increased. NS displayed significantly more RM than S. Between shell/augment RM remained constant as load increased. Between shell/cup S showed more RM than nS while both groups' RM increased with load. We conclude a significant increase of primary stability between the shell and the bone through the addition of cranial straps. Relative motion between components (shell/cup) increases through the addition of cranial straps. A clinical impact of this finding is uncertain and requires further investigation. Finally, the cementless fixation of the augment against the rim-portion of the shell appears stable and compares favorably to prior investigation of different fixation techniques.

10.
J Clin Med ; 10(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34441785

ABSTRACT

To date, the exact role of specific Toll-like receptors (TLRs) in regulating immune reactivity to metallic byproducts of orthopedic implants has not been fully clarified. In light of the situation, our objective in this investigation was to assess the expression levels of surface TLRs after metallic particle and ion exposure in an established animal model. Ten female BALB/c mice in each group received intra-articular injections of phosphate buffer (PBS) (control), metallic particles (MP), and metallic ions (MI), respectively. Seven days later, immunohistochemical staining was undertaken in the synovial layer of the murine knee joints using anti-TLR 1, 2, 4, 5, and 6 polyclonal antibodies. In addition to increased cellular infiltrates and a hyperplastic synovial membrane, the MP group showed significantly elevated TLR expression compared to the control group and had higher TLR 1-, 4-, and 6-positive cells than the MI group (p < 0.0167). TLR 4- and TLR 6-positive cells were significantly augmented for the MI group compared to the control group (p < 0.0167). Additionally, greenish corrosion particles found in the necrotic tissue suggested that metallic particles might release a certain level of locally toxic metallic ions in vivo.

11.
Polymers (Basel) ; 13(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198895

ABSTRACT

Diamond-like carbon coatings may decrease implant wear, therefore, they are helping to reduce aseptic loosening and increase service life of total knee arthroplasties (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While the deposition of a pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coating (a-C:H:W) as well as the detailed characterization of mechanical and adhesion properties were the subject of Part I, the tribological behavior is studied in Part II. Pin-on-disk tests are performed under artificial synovial fluid lubrication. Numerical elastohydrodynamic lubrication modeling is used to show the representability of contact conditions for TKAs and to assess the influence of coatings on lubrication conditions. The wear behavior is characterized by means of light and laser scanning microscopy, Raman spectroscopy, scanning electron microscopy and particle analyses. Although the coating leads to an increase in friction due to the considerably higher roughness, especially the UHMWPE wear is significantly reduced up to a factor of 49% (CoCr) and 77% (Ti64). Thereby, the coating shows continuous wear and no sudden failure or spallation of larger wear particles. This demonstrated the great potential of amorphous carbon coatings for knee replacements.

12.
Orthopade ; 50(12): 1032-1038, 2021 Dec.
Article in German | MEDLINE | ID: mdl-34255131

ABSTRACT

BACKGROUND: Since the use of ceramic-on-ceramic (CoC) hip endoprostheses complications in the form of squeaking noises have occasionally occurred. OBJECTIVES: This is the first histopathological analysis of the synovia-like interface membrane (SLIM) of ceramic squeaking hip endoprostheses with the aim to gain new insights into the squeaking pathogenesis. MATERIALS AND METHODS: Seven CoC hip endoprostheses with squeaking pathogenesis are analyzed by SLIM consensus classification, particle algorithm, CD3 quantification, semiquantitative CD68 macrophages, Oil-Red positive macrophages, hemosiderin evaluation and in two cases by energy dispersive X­ray spectroscopy (EDX). RESULTS: In 1733 hip joint prosthesis pathology cases, a squeaking revision incidence of 0.40% was determined. In addition to SLIM type I (1/7), only SLIM type IV (6/7) was detected. 4/7 CoC cases showed combinations of micro, macro and, for the first time, supramacro (166.5 µm) ceramic wear particles. The EDX analysis confirmed the ceramic and an additional metallic abrasion. Increased focal concentrated low inflammatory markers (CD3/CD68) with hemosiderin (5/7) and lipid depositions (Oil-Red positive macrophages) (6/7) occurred. CONCLUSIONS: A pathogenetic connection between SLIM type I/IV and squeaking can be assumed. SLIM types showed a partly light microscopic ceramic particle-dependent, partly independent predominantly low-grade inflammation. Hemosiderin and Oil-Red positive macrophages are signs of synovial tissue damage and indicate biomechanical misload (impingement) and dysfunction as cause of the squeaking pathogenesis.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Arthroplasty, Replacement, Hip/adverse effects , Ceramics , Hip Prosthesis/adverse effects , Humans , Noise , Prosthesis Design , Prosthesis Failure
13.
Knee ; 30: 170-175, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33933907

ABSTRACT

BACKGROUND: Total knee arthroplasty is a very successful standard treatment for severe osteoarthritis. Nevertheless, the literature reports tibial debonding between implant and bone cement as well as radiolucent lines related to the tibial components of different knee systems. Regardless of cementing techniques and the influences during surgery, we examined the design of a newly developed knee system and its predecessors (Attune, Attune S+, P.F.C. Sigma, P.F.C. Sigma RP/M.B.T., all DePuy). METHODS: We investigated the dimensions of the tibial components and the fit between them and their bone bed after instrumentation in a foam material. RESULTS: Our results showed considerable differences for the used knee prostheses as well as their tibial instrumentation options with a corresponding risk for incomplete seating. CONCLUSION: The orthopedic surgeons need to be aware of these design features and the resulting increased seating resistance especially in hard and sclerotic bone. ARTICLE FOCUS: Comparison of the tibial instruments and the different design options of the Attune knee system and its predecessor knee prostheses. KEY MESSAGES: The Attune implant showed incomplete seating because of too much press fit and an uneven bone quality or sclerosis can result in tilting of the tibial component. STRENGTHS AND LIMITATIONS: This is the first study investigating the Attune knee and its predecessor in terms of implant seating and press fit. The foam material is a limitation.


Subject(s)
Arthroplasty, Replacement, Knee/instrumentation , Bone Cements , Knee Prosthesis , Tibia , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Knee/methods , Humans , Knee Joint/surgery , Prosthesis Design , Tibia/anatomy & histology , Tibia/surgery
14.
Materials (Basel) ; 14(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925899

ABSTRACT

Joint replacement is a very successful medical treatment [...].

15.
Int J Med Sci ; 18(2): 295-303, 2021.
Article in English | MEDLINE | ID: mdl-33390798

ABSTRACT

Background: Implant loosening - either infectious or aseptic- is a still a major complication in the field of orthopaedic surgery. In both cases, a pro-inflammatory peri-prosthetic environment is generated by the immune system - either triggered by bacteria or by implant wear particles - which leads to osteoclast differentiation and osteolysis. Since infectious cases in particular often require multiple revision surgeries, we wondered whether commonly used surgical suture material may also activate the immune system and thus contribute to loss of bone substance by generation of osteoclasts. Methods: Tissue samples from patients suffering from infectious implant loosening were collected intraoperatively and presence of osteoclasts was evaluated by histopathology and immunohistochemistry. Further on, human monocytes were isolated from peripheral blood and stimulated with surgical suture material. Cell supernatant samples were collected and ELISA analysis for the pro-inflammatory cytokine IL-8 was performed. These experiments were additionally carried out on ivory slices to demonstrate functionality of osteoclasts. Whole blood samples were incubated with surgical suture material and up-regulation of activation-associated cell surface markers CD11b and CD66b on neutrophils was evaluated by flow cytofluorometry analysis. Results: We were able to demonstrate that multinucleated giant cells form in direct vicinity to surgical suture material. These cells stained positive for cathepsin K, which is a typical protease found in osteoclasts. By in vitro analysis, we were able to show that monocytes differentiated into osteoclasts when stimulated with surgical suture material. Resorption pits on ivory slices provided proof that the osteoclasts were functional. Release of IL-8 into cell supernatant was increased after stimulation with suture material and was further enhanced if minor amounts of bacterial lipoteichoic acid (LTA) were added. Neutrophils were also activated by surgical suture material and up-regulation of CD11b and CD66b could be seen. Conclusion: We were able to demonstrate that surgical suture material induces a pro-inflammatory response of immune cells which leads to osteoclast differentiation, in particular in combination with bacterial infection. In conclusion, surgical suture material -aside from bacteria and implant wear particles- is a contributing factor in implant loosening.


Subject(s)
Orthopedic Procedures/adverse effects , Osteolysis/immunology , Prostheses and Implants/adverse effects , Prosthesis-Related Infections/immunology , Sutures/adverse effects , Adult , Aged , Aged, 80 and over , Cell Differentiation/immunology , Female , Humans , Male , Middle Aged , Orthopedic Procedures/instrumentation , Orthopedic Procedures/methods , Osteoclasts/pathology , Osteolysis/prevention & control , Prosthesis Failure , Prosthesis-Related Infections/pathology
16.
Clin Oral Investig ; 25(3): 1265-1272, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32651646

ABSTRACT

OBJECTIVES: Conventional dental implants inserted in the molar region of the maxilla will reach into the sinus maxillaris when alveolar ridge height is limited. When surgery is performed without prior augmentation of the sinus floor, primary stability of the implant is important for successful osseointegration. This study aimed at identifying the impact of bone quality and quantity at the implantation site on primary implant stability of a simulated bicortical placement. MATERIALS AND METHODS: In our in vitro measurements, bone mineral density, total bone thickness and overall cortical bone thickness were assessed by micro-computed tomography (µCT) of pig scapulae, which resembled well the bicortical situation found in human patients. Dental implants were inserted, and micromotion between bone and implant was measured while loading the implant with an axial torque. RESULTS: The main findings were that primary implant stability did not depend on total bone thickness but tended to increase with either increasing bone mineral density or overall cortical bone thickness. CLINICAL RELEVANCE: Limited bone height in the maxilla is a major problem when planning dental implants. To overcome this problem, several approaches, e.g. external or internal sinus floor elevation, have been established. When planning the insertion of a dental implant an important aspect is the primary stability which can be expected. With other factors, the dimensions of the cortical bone might be relevant in this context. It would, therefore, be helpful to define the minimum thickness of cortical bone required to achieve sufficient primary stability, thus avoiding additional surgical intervention.


Subject(s)
Dental Implants , Sinus Floor Augmentation , Animals , Dental Implantation, Endosseous , Dental Prosthesis Retention , Dental Restoration Failure , Humans , Maxilla/surgery , Maxillary Sinus/surgery , Swine , X-Ray Microtomography
17.
J Shoulder Elbow Surg ; 30(8): e517-e530, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33220411

ABSTRACT

BACKGROUND: Polyethylene (PE) wear and material degradation have been reported as complications in reverse total shoulder replacements (rTSAs). In this regard, scapular notching is associated with more clinical complications. Therefore, the purposes of the study were to quantify the linear and volumetric wear, as a measure for the amount of removed material, and to qualitatively assess the PE damage modes to describe the material degradation in retrieved rTSA humeral PE inlays that contribute to failure of shoulder replacements. Furthermore, this study aimed to evaluate the effect of scapular notching on PE wear and rim damage of the humeral components. METHODS: The total study population of 39 humeral inlays contains 2 cohorts that were used for the damage mode analysis and for the wear analysis, respectively. The extent and presence of wear damage modes in 5 defined zones were assessed by a grading system for all PE joint replacements. For quantitative wear analysis the most frequent design (n = 17) was chosen. Using a coordinate-measuring machine and postprocessing software, volumetric wear measurements for the retrieved humeral PE inlays were undertaken. Furthermore, prerevision radiographs were analyzed for scapular notching. Finally, retrieval findings were correlated with clinical and radiographic data to consider the effect of notching and to identify risk of failures for these prostheses. RESULTS: Damage on the rim of the humeral PE inlays was more frequent and severe than on the intended articulation surface. Irrespective of the damage mode, the inferior rim zone sustained the greatest amount of wear damage followed by the posterior zone. Burnishing, scratching, pitting, and embedded particles are most likely to occur in the articular surface area, whereas surface deformation, abrasion, delamination and gross material degradation are predominantly present in the inferior and posterior rim zones. The retrieved inlays exhibited a mean volumetric wear rate of 296.9 mm³/yr ± 87.0 mm³/yr. However, if the notched and non-notched components were compared, a significant higher volumetric wear rate (296.5 ± 106.1 mm³/yr) was found for the notched components compared to the non-notched group (65.7 ± 7.4 mm³/yr). Generally, there was a significantly greater incidence of damage and greater amount of wear if scapular notching occurred. CONCLUSION: The notched components showed a 5-fold increase in PE wear rate. Therefore, scapular notching has a strong effect on PE damage and wear. If scapular notching can be clinically avoided, the PE wear performance is in a similar magnitude as found for hip and knee replacements.


Subject(s)
Arthroplasty, Replacement, Shoulder , Arthroplasty, Replacement , Shoulder Joint , Arthroplasty, Replacement/adverse effects , Arthroplasty, Replacement, Shoulder/adverse effects , Humans , Humerus , Polyethylene , Prosthesis Design , Scapula , Shoulder Joint/diagnostic imaging , Shoulder Joint/surgery
18.
Ther Clin Risk Manag ; 16: 1203-1212, 2020.
Article in English | MEDLINE | ID: mdl-33324065

ABSTRACT

PURPOSE: Aseptic implant loosening is still a feared complication in the field of orthopaedics. Presumably, a chronic inflammatory response is induced by wear particles, which leads to osteoclast generation, bone degradation and hence loosening of the implant. Since it has been demonstrated in the literature that most implants are in fact colonized by bacteria, the question arises whether aseptic implant loosening is truly aseptic. The aim of this study was to investigate a possibly enhanced inflammatory response to metal wear particles in the context of subclinical infection. PATIENTS AND METHODS: Tissue samples were collected intra-operatively from patients undergoing implant-exchange surgery due to aseptic loosening. Histopathological analysis was performed, as well as gene expression analysis for the pro-inflammatory cytokine Interleukin-8. By a series of in vitro experiments, the effect of metal wear particles on human monocytes, polymorphonuclear neutrophiles and osteoblasts was investigated. Additionally, minor amounts of lipoteichoic acid (LTA) and the bacterial heat shock protein GroEL were added. RESULTS: Histopathology of tissue samples revealed an accumulation of metal wear particles, as well as a cellular infiltrate consisting predominately of mononuclear cells. Furthermore, high expression of IL-8 could be detected in tissue surrounding the implant. Monocytes and osteoblasts in particular showed an increased release of IL-8 after stimulation with metal wear particles and in particular after stimulation with bacterial components and wear particles together. CONCLUSION: We were able to show that minor amounts of bacterial components and metal wear particles together induce an enhanced inflammatory response in human monocytes and osteoblasts. This effect could significantly contribute to the generation of bone-resorbing osteoclasts and hence implant-loosening.

19.
Materials (Basel) ; 13(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158086

ABSTRACT

Due to its mechanical properties and good biocompatibility, Ti6Al4V ELI (extra low interstitials) is widely used in medical technology, especially as material for implants. The specific microstructures that are approved for this purpose are listed in the standard ISO 20160:2006. Inductive short-term heat treatment is suitable for the adjustment of near-surface component properties such as residual stress conditions. A systematic evaluation of the Ti6Al4V microstructures resulting from short-term heat treatment is presently missing. In order to assess the parameter field that leads to suitable microstructures for load-bearing implants, dilatometer experiments have been conducted. For this purpose, dilatometer experiments with heating rates up to 1000 °C/s, holding times between 0.5 and 30 s and cooling rates of 100 and 1000 °C/s were systematically examined in the present study. Temperatures up to 950 °C and a holding time of 0.5 s led to microstructures, which are approved for medical applications according to the standard ISO 20160:2006. Below 950 °C, longer holding times can also be selected.

20.
Materials (Basel) ; 13(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076447

ABSTRACT

The medial Oxford unicompartmental knee arthroplasty (OUKA) shows good survivorship, as well as clinical results. Aseptic loosening, however, remains one of the main reasons for revision and polyethylene debris is known to cause aseptic loosening. The role of bearing thickness in total as well as unicondylar knee arthroplasty has been the subject of controversial discussions, especially the longevity of lower thickness bearings in total knee arthroplasty was questioned. The purpose of this study was to assess the influence of bearing thickness on time to revision, damage pattern, penetration, and volumetric material loss. A cohort of 47 consecutively retrieved medial OUKA bearings was analyzed with conventional direct light microscopy applying the Hood damage analysis, as well as measuring the penetration depth. In this retrieval cohort, a difference on survival time, damage, penetration, as well as volumetric material loss could not be seen. We conclude that low as well as high thickness bearings can safely be used in OUKA without any relevant differences in terms of wear and damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...