Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(49): 11224-11234, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38056002

ABSTRACT

Formation of liquid condensates plays a critical role in biology via localization of different components or via altered hydrodynamic transport, yet the hydrogen-bonding environment within condensates, pivotal for solvation, has remained elusive. We explore the hydrogen-bond dynamics within condensates formed by the low-complexity domain of the fused in sarcoma protein. Probing the hydrogen-bond dynamics sensed by condensate proteins using two-dimensional infrared spectroscopy of the protein amide I vibrations, we find that frequency-frequency correlations of the amide I vibration decay on a picosecond time scale. Interestingly, these dynamics are markedly slower for proteins in the condensate than in a homogeneous protein solution, indicative of different hydration dynamics. All-atom molecular dynamics simulations confirm that lifetimes of hydrogen-bonds between water and the protein are longer in the condensates than in the protein in solution. Altered hydrogen-bonding dynamics may contribute to unique solvation and reaction dynamics in such condensates.


Subject(s)
Sarcoma , Humans , Proteins , Amides , Hydrogen
2.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299235

ABSTRACT

The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.


Subject(s)
Phleum/metabolism , Plant Proteins/metabolism , Rhinitis, Allergic, Seasonal/metabolism , Allergens/chemistry , Kinetics , Nitrates/metabolism , Nitrogen Dioxide/chemistry , Nitrogen Oxides , Oxidants , Ozone/chemistry , Peroxynitrous Acid/chemistry , Plant Proteins/analysis , Poaceae/metabolism , Pollen/metabolism , Proteins/chemistry , Rhinitis, Allergic, Seasonal/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...