Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 35(4): 738-745, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38422011

ABSTRACT

Native top-down mass spectrometry (nTDMS) has emerged as a powerful structural biology tool that can localize post-translational modifications (PTMs), explore ligand-binding interactions, and elucidate the three-dimensional structure of proteins and protein complexes in the gas-phase. Fourier-transform ion cyclotron resonance (FTICR) MS offers distinct capabilities for nTDMS, owing to its ultrahigh resolving power, mass accuracy, and robust fragmentation techniques. Previous nTDMS studies using FTICR have mainly been applied to overexpressed recombinant proteins and protein complexes. Here, we report the first nTDMS study that directly analyzes human heart tissue lysate by direct infusion FTICR MS without prior chromatographic separation strategies. We have achieved comprehensive nTDMS characterization of cardiac contractile proteins that play critical roles in heart contraction and relaxation. Specifically, our results reveal structural insights into ventricular myosin light chain 2 (MLC-2v), ventricular myosin light chain 1 (MLC-1v), and alpha-tropomyosin (α-Tpm) in the sarcomere, the basic contractile unit of cardiac muscle. Furthermore, we verified the calcium (Ca2+) binding domain in MLC-2v. In summary, our nTDMS platform extends the application of FTICR MS to directly characterize the structure, PTMs, and metal-binding of endogenous proteins from heart tissue lysate without prior separation methods.


Subject(s)
Proteins , Sarcomeres , Humans , Sarcomeres/chemistry , Proteins/chemistry , Mass Spectrometry/methods , Heart , Myocardium/chemistry
2.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37294807

ABSTRACT

MOTIVATION: Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. RESULTS: We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a "one-stop shop" for characterizing both native protein complexes and proteoforms. AVAILABILITY AND IMPLEMENTATION: The MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.


Subject(s)
Proteomics , Software , Databases, Factual , DNA-Binding Proteins , Mass Spectrometry , Proteomics/methods
3.
bioRxiv ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36711733

ABSTRACT

Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a one-stop shop for characterizing both native protein complexes and proteoforms. The MASH Native app, video tutorials, written tutorials and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHNativeSoftware.php . All data files shown in user tutorials are included with the MASH Native software in the download .zip file.

4.
Science ; 372(6542): 642-646, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33811162

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Subject(s)
Allosteric Site , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Drug Development , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects
5.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33658206

ABSTRACT

Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses, with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing a pandemic in 2020. Coronaviral non-structural proteins (nsps) form the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complexes has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations, SARS-CoV-2 nsp7+8 consists primarily of heterotetramers. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model proposed.


Subject(s)
Alphacoronavirus/metabolism , Betacoronavirus/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Conserved Sequence , Cross-Linking Reagents/chemistry , Models, Molecular , Protein Multimerization , Protein Subunits/metabolism , Scattering, Radiation , Scattering, Small Angle , Species Specificity , Viral Nonstructural Proteins/chemistry , X-Ray Diffraction
6.
Sci Rep ; 10(1): 16539, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024154

ABSTRACT

The human pathogen Mycobacterium tuberculosis is the causative agent of tuberculosis resulting in over 1 million fatalities every year, despite decades of research into the development of new anti-TB compounds. Unlike most other organisms M. tuberculosis has six putative genes for epoxide hydrolases (EH) of the α/ß-hydrolase family with little known about their individual substrates, suggesting functional significance for these genes to the organism. Due to their role in detoxification, M. tuberculosis EH's have been identified as potential drug targets. Here, we demonstrate epoxide hydrolase activity of M. thermoresistibile epoxide hydrolase A (Mth-EphA) and report its crystal structure in complex with the inhibitor 1,3-diphenylurea at 2.0 Å resolution. Mth-EphA displays high sequence similarity to its orthologue from M. tuberculosis and generally high structural similarity to α/ß-hydrolase EHs. The structure of the inhibitor bound complex reveals the geometry of the catalytic residues and the conformation of the inhibitor. Comparison to other EHs from mycobacteria allows insight into the active site plasticity with respect to substrate specificity. We speculate that mycobacterial EHs may have a narrow substrate specificity providing a potential explanation for the genetic repertoire of epoxide hydrolase genes in M. tuberculosis.


Subject(s)
Crystallization , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/genetics , Genes, Bacterial/genetics , Inactivation, Metabolic/genetics , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Carbanilides , Epoxide Hydrolases/physiology , Substrate Specificity
7.
bioRxiv ; 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33024972

ABSTRACT

Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses with SARS-CoV-2 causing a pandemic in 2020. Coronaviral non-structural proteins (nsp) built up the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complex has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on a native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations mainly heterotetramers are observed for SARS-CoV-2 nsp7+8. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model is proposed.

8.
Biochem J ; 477(5): 1009-1019, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32083638

ABSTRACT

Severe acute respiratory syndrome coronavirus is the causative agent of a respiratory disease with a high case fatality rate. During the formation of the coronaviral replication/transcription complex, essential steps include processing of the conserved polyprotein nsp7-10 region by the main protease Mpro and subsequent complex formation of the released nsp's. Here, we analyzed processing of the coronavirus nsp7-10 region using native mass spectrometry showing consumption of substrate, rise and fall of intermediate products and complexation. Importantly, there is a clear order of cleavage efficiencies, which is influenced by the polyprotein tertiary structure. Furthermore, the predominant product is an nsp7+8(2 : 2) hetero-tetramer with nsp8 scaffold. In conclusion, native MS, opposed to other methods, can expose the processing dynamics of viral polyproteins and the landscape of protein interactions in one set of experiments. Thereby, new insights into protein interactions, essential for generation of viral progeny, were provided, with relevance for development of antivirals.


Subject(s)
RNA-Binding Proteins/genetics , Sequence Alignment/methods , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Coronavirus 3C Proteases , Coronavirus Infections/genetics , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Fluorescence Resonance Energy Transfer , Protein Structure, Secondary , RNA-Binding Proteins/chemistry , Viral Nonstructural Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Virus Replication/physiology
9.
Adv Virus Res ; 105: 189-238, 2019.
Article in English | MEDLINE | ID: mdl-31522705

ABSTRACT

Over the last 20 years, mass spectrometry (MS), with its ability to analyze small sample amounts with high speed and sensitivity, has more and more entered the field of structural virology, aiming to investigate the structure and dynamics of viral proteins as close to their native environment as possible. The use of non-perturbing labels in hydrogen-deuterium exchange MS allows for the analysis of interactions between viral proteins and host cell factors as well as their dynamic responses to the environment. Cross-linking MS, on the other hand, can analyze interactions in viral protein complexes and identify virus-host interactions in cells. Native MS allows transferring viral proteins, complexes and capsids into the gas phase and has broken boundaries to overcome size limitations, so that now even the analysis of intact virions is possible. Different MS approaches not only inform about size, stability, interactions and dynamics of virus assemblies, but also bridge the gap to other biophysical techniques, providing valuable constraints for integrative structural modeling of viral complex assemblies that are often inaccessible by single technique approaches. In this review, recent advances are highlighted, clearly showing that structural MS approaches in virology are moving towards systems biology and ever more experiments are performed on cellular level.


Subject(s)
Capsid/chemistry , Capsid/metabolism , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Viral Proteins/chemistry , Viral Proteins/metabolism , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism
10.
RNA Biol ; 13(10): 973-987, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-27471797

ABSTRACT

G-quadruplexes have recently moved into focus of research in nucleic acids, thereby evolving in scientific significance from exceptional secondary structure motifs to complex modulators of gene regulation. Aptamers (nucleic acid based ligands with recognition properties for a specific target) that form Gquadruplexes may have particular potential for therapeutic applications as they combine the characteristics of specific targeting and Gquadruplex mediated stability and regulation. We have investigated the structure and target interaction properties of one such aptamer: AIR-3 and its truncated form AIR-3A. These RNA aptamers are specific for human interleukin-6 receptor (hIL-6R), a key player in inflammatory diseases and cancer, and have recently been exploited for in vitro drug delivery studies. With the aim to resolve the RNA structure, global shape, RNA:protein interaction site and binding stoichiometry, we now investigated AIR-3 and AIR-3A by different methods including RNA structure probing, Small Angle X-ray scattering and microscale thermophoresis. Our findings suggest a broader spectrum of folding species than assumed so far and remarkable tolerance toward different modifications. Mass spectrometry based binding site analysis, supported by molecular modeling and docking studies propose a general Gquadruplex affinity for the target molecule hIL-6R.

11.
J Biol Chem ; 291(10): 4882-93, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26683375

ABSTRACT

Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full-length protein and an N-terminally truncated C-terminal cell wall binding domain (CBD). The truncated CBD is produced through an internal translation start site within the endolysin gene. Mutants affecting the internal translation site change the oligomeric state of the endolysin and reduce lytic activity. The activity can be modulated by reconstitution of the full-length endolysin-CBD complex with free CBD. The same oligomerization mechanism applies to the CD27L endolysin that targets Clostridium difficile and the CS74L endolysin that targets Clostridium sporogenes. When the CTP1L endolysin gene is introduced into the commensal bacterium Lactococcus lactis, the truncated CBD is also produced, showing that the alternative start codon can be used in other bacterial species. The identification of a translational switch affecting oligomerization presented here has implications for the design of effective endolysins for the treatment of bacterial infections.


Subject(s)
Endopeptidases/chemistry , Amino Acid Sequence , Bacteriophages/enzymology , Bacteriophages/genetics , Clostridium tyrobutyricum/drug effects , Codon, Initiator , Endopeptidases/genetics , Endopeptidases/metabolism , Endopeptidases/toxicity , Molecular Sequence Data , Mutation , Protein Binding , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...