Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ann Hematol ; 103(4): 1149-1158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336973

ABSTRACT

Bone marrow biopsy (BMB) is a well-established diagnostic tool for various hematological, oncological, and other medical conditions. However, treatment options for geriatric patients (pts) facing these diseases are often constrained. In this single-center, retrospective analysis we assessed the diagnostic value of BMB in geriatric pts aged ≥ 85 years and examined its impact on therapeutic decisions. We examined 156 BMB procedures in 129 pts, extracting data from the electronic patient records and applying descriptive statistical methods. Nearly half of the primary diagnostic procedures (26; 44.1%) resulted in a modification of the initially suspected diagnosis. Notably, 15 (25.4%) of these procedures, led to changes in both the diagnosis and planned interventional treatment. Among the 15 follow-up procedures (36.6%), disease progression was initially suspected based on symptoms, but BMB results excluded such progression. In lymphoma staging biopsies, only 2 (3.6%) prompted a change in therapeutic intervention. Importantly, no BMB-related complications, such as bleeding, infection or nerve damage, were reported. Median survival after BMB was 16.1 months across all pts, yet it varied based on the diagnosis and comorbidity score. The survival of pts with a change in therapy based on BMB results did not significantly differ from those who did not undergo a therapy change. In conclusion, BMB proved to be generally safe and beneficial in this geriatric cancer patient cohort beyond the age of 85 years. However, the advantages of lymphoma staging in this patient population warrant further consideration.


Subject(s)
Bone Marrow , Hodgkin Disease , Humans , Aged , Bone Marrow/pathology , Retrospective Studies , Biopsy , Hodgkin Disease/pathology , Fluorodeoxyglucose F18 , Neoplasm Staging
2.
Hemasphere ; 7(5): e874, 2023 May.
Article in English | MEDLINE | ID: mdl-37096215

ABSTRACT

Telomere biology disorders (TBD) result from premature telomere shortening due to pathogenic germline variants in telomere maintenance-associated genes. In adults, TBD are characterized by mono/oligosymptomatic clinical manifestations (cryptic TBD) contributing to severe underdiagnosis. We present a prospective multi-institutional cohort study where telomere length (TL) screening was performed in either newly diagnosed patients with aplastic anemia (AA) or if TBD was clinically suspected by the treating physician. TL of 262 samples was measured via flow-fluorescence in situ hybridization (FISH). TL was considered suspicious once below the 10th percentile of normal individuals (standard screening) or if below 6.5 kb in patients >40 years (extended screening). In cases with shortened TL, next generation sequencing (NGS) for TBD-associated genes was performed. The patients referred fell into 6 different screening categories: (1) AA/paroxysmal nocturnal hemoglobinuria, (2) unexplained cytopenia, (3) dyskeratosis congenita, (4) myelodysplastic syndrome/acute myeloid leukemia, (5) interstitial lung disease, and (6) others. Overall, TL was found to be shortened in 120 patients (n = 86 standard and n = 34 extended screening). In 17 of the 76 (22.4%) standard patients with sufficient material for NGS, a pathogenic/likely pathogenic TBD-associated gene variant was identified. Variants of uncertain significance were detected in 17 of 76 (22.4%) standard and 6 of 29 (20.7%) extended screened patients. Expectedly, mutations were mainly found in TERT and TERC. In conclusion, TL measured by flow-FISH represents a powerful functional in vivo screening for an underlying TBD and should be performed in every newly diagnosed patient with AA as well as other patients with clinical suspicion for an underlying TBD in both children and adults.

4.
Ann Hematol ; 101(12): 2655-2663, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269400

ABSTRACT

Molecular diagnostics moves more into focus as technology advances. In patients with myeloproliferative neoplasms (MPN), identification and monitoring of the driver mutations have become an integral part of diagnosis and monitoring of the disease. In some patients, none of the known driver mutations (JAK2V617F, CALR, MPL) is found, and they are termed "triple negative" (TN). Also, whole-blood variant allele frequency (VAF) of driver mutations may not adequately reflect the VAF in the stem cells driving the disease. We reasoned that colony forming unit (CFU) assay-derived clonogenic cells may be better suited than next-generation sequencing (NGS) of whole blood to detect driver mutations in TN patients and to provide a VAF of disease-driving cells. We have included 59 patients carrying the most common driver mutations in the establishment or our model. Interestingly, cloning efficiency correlated with whole blood VAF (p = 0.0048), suggesting that the number of disease-driving cells correlated with VAF. Furthermore, the clonogenic VAF correlated significantly with the NGS VAF (p < 0.0001). This correlation was lost in patients with an NGS VAF <15%. Further analysis showed that in patients with a VAF <15% by NGS, clonogenic VAF was higher than NGS VAF (p = 0.003), suggesting an enrichment of low numbers of disease-driving cells in CFU assays. However, our approach did not enhance the identification of driver mutations in 5 TN patients. A significant correlation of lactate dehydrogenase (LDH) serum levels with both CFU- and NGS-derived VAF was found. Our results demonstrate that enrichment for clonogenic cells can improve the detection of MPN driver mutations in patients with low VAF and that LDH levels correlate with VAF.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Calreticulin/genetics , Calreticulin/metabolism , Gene Frequency , Mutation , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics
7.
Blood Adv ; 5(17): 3373-3376, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34477817

ABSTRACT

The molecular causes of myeloproliferative neoplasms (MPNs) have not yet been fully elucidated. Approximately 7% to 8% of the patients carry predisposing genetic germline variants that lead to driver mutations, which enhance JAK-STAT signaling. To identify additional predisposing genetic germline variants, we performed whole-exome sequencing in 5 families, each with parent-child or sibling pairs affected by MPNs and carrying the somatic JAK2 V617F mutation. In 4 families, we detected rare germline variants in known tumor predisposition genes of the DNA repair pathway, including the highly penetrant BRCA1 and BRCA2 genes. The identification of an underlying hereditary tumor predisposition is of major relevance for the individual patients as well as for their families in the context of therapeutic options and preventive care. Two patients with essential thrombocythemia or polycythemia vera experienced progression to acute myeloid leukemia, which may suggest a high risk of leukemic transformation in these familial MPNs. Our study demonstrates the relevance of genetic germline diagnostics in elucidating the causes of MPNs and suggests novel therapeutic options (eg, PARP inhibitors) in MPNs. Furthermore, we uncover a broader tumor spectrum upon the detection of a germline mutation in genes of the DNA repair pathway.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , BRCA1 Protein/genetics , DNA Repair/genetics , Germ Cells , Humans , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics
8.
Cancers (Basel) ; 13(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34439364

ABSTRACT

Lipocalin 2 (LCN2), a proinflammatory mediator, is involved in the pathogenesis of myeloproliferative neoplasms (MPN). Here, we investigated the molecular mechanisms of LCN2 overexpression in MPN. LCN2 mRNA expression was 20-fold upregulated in peripheral blood (PB) mononuclear cells of chronic myeloid leukemia (CML) and myelofibrosis (MF) patients vs. healthy controls. In addition, LCN2 serum levels were significantly increased in polycythemia vera (PV) and MF and positively correlated with JAK2V617F and mutated CALR allele burden and neutrophil counts. Mechanistically, we identified endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) as a main driver of LCN2 expression in BCR-ABL- and JAK2V617F-positive 32D cells. The UPR inducer thapsigargin increased LCN2 expression >100-fold, and this was not affected by kinase inhibition of BCR-ABL or JAK2V617F. Interestingly, inhibition of the UPR regulators inositol-requiring enzyme 1 (IRE1) and c-Jun N-terminal kinase (JNK) significantly reduced thapsigargin-induced LCN2 RNA and protein expression, and luciferase promoter assays identified nuclear factor kappa B (NF-κB) and CCAAT binding protein (C/EBP) as critical regulators of mLCN2 transcription. In conclusion, the IRE1-JNK-NF-κB-C/EBP axis is a major driver of LCN2 expression in MPN, and targeting UPR and LCN2 may represent a promising novel therapeutic approach in MPN.

9.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439237

ABSTRACT

Inflammation-induced thrombosis represents a severe complication in patients with myeloproliferative neoplasms (MPN) and in those with kidney dysfunction. Overlapping disease-specific attributes suggest common mechanisms involved in MPN pathogenesis, kidney dysfunction, and thrombosis. Data from 1420 patients with essential thrombocythemia (ET, 33.7%), polycythemia vera (PV, 38.5%), and myelofibrosis (MF, 27.9%) were extracted from the bioregistry of the German Study Group for MPN. The total cohort was subdivided according to the calculated estimated glomerular filtration rate (eGFR, (mL/min/1.73 m2)) into eGFR1 (≥90, 21%), eGFR2 (60-89, 56%), and eGFR3 (<60, 22%). A total of 29% of the patients had a history of thrombosis. A higher rate of thrombosis and longer MPN duration was observed in eGFR3 than in eGFR2 and eGFR1. Kidney dysfunction occurred earlier in ET than in PV or MF. Multiple logistic regression analysis identified arterial hypertension, MPN treatment, increased uric acid, and lactate dehydrogenase levels as risk factors for kidney dysfunction in MPN patients. Risk factors for thrombosis included arterial hypertension, non-excessive platelet counts, and antithrombotic therapy. The risk factors for kidney dysfunction and thrombosis varied between MPN subtypes. Physicians should be aware of the increased risk for kidney disease in MPN patients, which warrants closer monitoring and, possibly, early thromboprophylaxis.

12.
Br J Haematol ; 193(3): 669-673, 2021 05.
Article in English | MEDLINE | ID: mdl-32744739

ABSTRACT

Dyskeratosis Congenita (DKC) is a systemic disorder caused by mutations resulting in impaired telomere maintenance. Clinical features include bone marrow failure and an increased risk of developing hematological malignancies. There are conflicting data whether androgen derivatives (AD) can elongate telomeres in vivo and whether AD treatment enhances the risk of gaining myelodysplastic syndrome-related mutations. Seven TERC or TERT-mutated DKC patients underwent AD treatment. All patients revealed hematological response. Telomere length of lymphocytes and granulocytes increased significantly and no MDS-related mutations were detected. Pending longer follow-up, treatment with AD seems to represent an efficient and safe therapy for DKC patients.


Subject(s)
Androgens/pharmacology , Dyskeratosis Congenita/blood , Telomere Homeostasis/drug effects , Telomere/metabolism , Adult , Blood Cell Count , Dyskeratosis Congenita/drug therapy , Dyskeratosis Congenita/genetics , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/chemically induced , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA/genetics , RNA/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics
13.
Ann Hematol ; 98(12): 2703-2709, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31748924

ABSTRACT

Philadelphia negative (Ph-neg) myeloproliferative neoplasms (MPN) are a heterogenous group of clonal stem cell disorders. Approved treatment options include hydroxyurea, anagrelide, and ruxolitinib, which are not curative. The concept of synthetic lethality may become an additional therapeutic strategy in these diseases. In our study, we show that DNA repair is altered in classical Ph-neg MPN, as analyzed by gene expression analysis of 11 genes involved in the homologous recombination repair pathway (HRR), the non-homologous end-joining pathway (NHEJ), and the single-strand break repair pathway (SSB). Altogether, peripheral blood-derived cells from 57 patients with classical Ph-neg MPN and 13 healthy controls were analyzed. LIG3 as an essential part of the SSB was significantly lower expressed compared to controls in all three entities (essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)). In addition, while genes of other DNA-repair pathways showed-possibly compensatory-increased expression in ET (HRR, NHEJ) and PV (NHEJ), MF samples displayed downregulation of all genes involved in NHEJ. With regard to the JAK2 mutational status (analyzed in ET and MF only), no upregulation of the HRR was detected. Though further studies are needed, based on these findings, we conclude that synthetic lethality may become a promising strategy in treating patients with Ph-neg MPN.


Subject(s)
DNA Repair , DNA, Neoplasm , Hematologic Neoplasms , Myeloproliferative Disorders , Neoplasm Proteins , Transcription, Genetic , Adult , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Female , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Male , Middle Aged , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Philadelphia Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...